Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Identifying the different influences of symptoms in dynamic psychopathology models may hold promise for increasing treatment efficacy in clinical applications. Dynamic psychopathology models study the behavioral patterns of symptom networks, where symptoms mutually enforce each other. Interventions could be tailored to specific symptoms that are most effective at lowering symptom activity or that hinder the further development of psychopathology. Simulating interventions in psychopathology network models fits in a novel tradition where symptom-specific perturbations are used as in silico interventions. Here, we present the NodeIdentifyR algorithm (NIRA) to identify the projected most efficient, symptom-specific intervention target in a network model (i.e., the Ising model). We implemented NIRA in a freely available R package. The technique studies the projected effects of symptom-specific interventions by simulating data while symptom parameters (i.e., thresholds) are systematically altered. The projected effect of these interventions is defined in terms of the expected change in overall symptom activity across simulations. With this algorithm, it is possible to study (1) whether symptoms differ in their projected influence on the behavior of the symptom network and, if so, (2) which symptom has the largest projected effect in lowering or increasing overall symptom activation. As an illustration, we apply the algorithm to an empirical dataset containing Post-Traumatic Stress Disorder symptom assessments of participants who experienced the Wenchuan earthquake in 2008. The most important limitations of the method are discussed, as well as recommendations for future research, such as shifting towards modeling individual processes to validate these types of simulation-based intervention methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ymeth.2021.11.006 | DOI Listing |