Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Precursor messenger RNA (Pre-mRNA) splicing is a crucial step in gene expression whereby the spliceosome produces constitutively and alternatively spliced transcripts. These transcripts not only diversify the transcriptome, but also play essential roles in plant development and responses to environmental changes. Much evidence indicates that regulation at the pre-mRNA splicing step is important for flowering time control; however, the components and detailed mechanism underlying this process remain largely unknown. Here, we identified the splicing factor RNA BINDING PROTEIN 45d (RBP45d), a member of the RBP45/47 family in Arabidopsis thaliana. Using sequence comparison and biochemical analysis, we determined that RBP45d is a component of the U1 small nuclear ribonucleoprotein (U1 snRNP) with functions distinct from other family members. RBP45d associates with the U1 snRNP by interacting with pre-mRNA-processing factor 39a (PRP39a) and directly regulates alternative splicing (AS) for a specific set of genes. Plants with loss of RBP45d and PRP39a function exhibited defects in temperature-induced flowering, potentially due to the misregulation of temperature-sensitive AS of FLOWERING LOCUS M as well as the accumulation of the flowering repressor FLOWERING LOCUS C. Taken together, RBP45d is a U1 snRNP component in plants that functions with PRP39a in temperature-mediated flowering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8824692PMC
http://dx.doi.org/10.1093/plcell/koab273DOI Listing

Publication Analysis

Top Keywords

snrnp component
8
pre-mrna splicing
8
flowering locus
8
flowering
7
rbp45d
6
snrnp
4
component rbp45d
4
rbp45d regulates
4
regulates temperature-responsive
4
temperature-responsive flowering
4

Similar Publications

Transcription and splicing are coupled both temporally and physically. A previous cryo-EM structure of the human U1 snRNP and RNA polymerase pol II complex has shown that U1 snRNP uses predominantly the RRM domain of U1-70K to directly interact with the RPB2 subunit of pol II. However, residues on U1-70K involved in the interaction with pol II are not conserved in yeast U1-70K, raising the question whether yeast U1 snRNP interacts with pol II in a similar manner.

View Article and Find Full Text PDF

Heat shock proteins have been increasingly identified in RNA-interactomes, suggesting potential roles beyond their canonical functions. Among those, the cancer-linked chaperone TRAP1 has been mainly characterized for its regulatory role on respiratory complex activity and protein synthesis, while its specific function as an RNA-binding protein (RBP) remains unclear. In this study, we confirmed the RNA-binding activity of TRAP1 in living cells using both protein- and RNA-centric approaches and demonstrated that multiple TRAP1 regions cooperate in such binding.

View Article and Find Full Text PDF

Eukaryotic pre-mRNA processing steps, including splicing and 3' processing, are tightly coordinated, yet the underlying mechanisms remain incompletely understood. U1 snRNP has been proposed to inhibit 3' processing at intronic polyadenylation (IPA) sites through a splicing-independent mechanism termed telescripting. In contrast, we discovered that disrupting splicing-by targeting various key components such as U1 snRNP, U2 snRNP, U2AF, and SF3b-activates 3' processing at thousands of IPA sites.

View Article and Find Full Text PDF

The U1 small nuclear ribonucleoprotein (snRNP) complex is crucial for pre-mRNA splicing and the regulation of gene expression. As a core component of the spliceosome, it is responsible for recognizing 5'-splice sites and initiating the splicing process. Each subunit of this complex performs specific functions in the assembly and stabilization of the spliceosomal machinery.

View Article and Find Full Text PDF

Histone mRNAs are the only nonpolyadenylated mRNAs in eukaryotic cells and require specialized processing in the histone locus body (HLB), a nuclear body where essential processing factors, including the U7 snRNP, are concentrated. Recent studies have revealed that misregulation of histone pre-mRNA processing can lead to polyadenylation of histone mRNAs and disruption of histone protein homeostasis. Despite links to human disease, the factors contributing to polyadenylation of histone mRNAs and the mechanisms underlying HLB assembly and U7 snRNP biogenesis remain unclear.

View Article and Find Full Text PDF