Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As the Arctic region moves into uncharted territory under a warming climate, it is important to refine the terrestrial biosphere models (TBMs) that help us understand and predict change. One fundamental uncertainty in TBMs relates to model parameters, configuration variables internal to the model whose value can be estimated from data. We incorporate a version of the Terrestrial Ecosystem Model (TEM) developed for arctic ecosystems into the Predictive Ecosystem Analyzer (PEcAn) framework. PEcAn treats model parameters as probability distributions, estimates parameters based on a synthesis of available field data, and then quantifies both model sensitivity and uncertainty to a given parameter or suite of parameters. We examined how variation in 21 parameters in the equation for gross primary production influenced model sensitivity and uncertainty in terms of two carbon fluxes (net primary productivity and heterotrophic respiration) and two carbon (C) pools (vegetation C and soil C). We set up different parameterizations of TEM across a range of tundra types (tussock tundra, heath tundra, wet sedge tundra, and shrub tundra) in northern Alaska, along a latitudinal transect extending from the coastal plain near Utqiaġvik to the southern foothills of the Brooks Range, to the Seward Peninsula. TEM was most sensitive to parameters related to the temperature regulation of photosynthesis. Model uncertainty was mostly due to parameters related to leaf area, temperature regulation of photosynthesis, and the stomatal responses to ambient light conditions. Our analysis also showed that sensitivity and uncertainty to a given parameter varied spatially. At some sites, model sensitivity and uncertainty tended to be connected to a wider range of parameters, underlining the importance of assessing tundra community processes across environmental gradients or geographic locations. Generally, across sites, the flux of net primary productivity (NPP) and pool of vegetation C had about equal uncertainty, while heterotrophic respiration had higher uncertainty than the pool of soil C. Our study illustrates the complexity inherent in evaluating parameter uncertainty across highly heterogeneous arctic tundra plant communities. It also provides a framework for iteratively testing how newly collected field data related to key parameters may result in more effective forecasting of Arctic change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9285828PMC
http://dx.doi.org/10.1002/eap.2499DOI Listing

Publication Analysis

Top Keywords

sensitivity uncertainty
16
model sensitivity
12
uncertainty
10
model
9
parameters
9
parameter uncertainty
8
tundra
8
arctic tundra
8
tundra plant
8
plant communities
8

Similar Publications

The High-Intensity Proton Accelerator Facility at the Paul Scherrer Institute (PSI) accelerates protons to an energy of 590 MeV with currents up to 2.4 mA, i.e.

View Article and Find Full Text PDF

Estimation of the minimal important change for Brief Pain Inventory in patients with persistent spinal pain.

Musculoskelet Sci Pract

September 2025

Department of Physiotherapy and Occupational Therapy, Aalborg University Hospital, Aalborg, 9000, Denmark; Aalborg University, Department of Clinical Medicine, Aalborg, 9000, Denmark.

Background: The Brief Pain Inventory (BPI) is a widely used tool for assessing pain severity and interference, aligning with the bio-psycho-social model. It has been validated in various languages for patients with persistent spinal pain. However, the Minimal Important Change (MIC), which represents the smallest change perceived as meaningful by patients, has not yet been explored for this patient population.

View Article and Find Full Text PDF

This AI-assisted review article offers a dual review: a book review of Living with Risk in the Late Roman World by Cam Grey, and a critical review of the current potential of large language models (LLMs), specifically ChatGPT's DeepResearch mode, to assist in thoughtful and scholarly book reviewing within risk science. Grey's book presents an innovative reconstruction of how communities in the late Roman Empire perceived and adapted to chronic environmental and societal risks, emphasizing spatial variability, cultural interpretation, and the normalization of uncertainty. Drawing on commentary from a human reviewer and a parallel AI-assisted analysis, we compare the distinct strengths and limitations of each approach.

View Article and Find Full Text PDF

Objective: To assess the cost-effectiveness of silver diamine fluoride (SDF) relative to sodium fluoride (NaF) and traditional resin-modified glass ionomer cements (RMGIC) restorations for the management of root caries in older adults aged 60 and above.

Methods: A Markov model design was chosen and two models were constructed: 1) Clinic-based model - with access to dental facility that allows for placement of traditional restorations, 2) Community-based model - without access to dental facility due to mobility, lack of executive function, or financial barriers. Modelling was done over a 10-year time horizon with a cycle length of one year.

View Article and Find Full Text PDF

This study compares the dosimetric performance of Base Dose Optimization (BDO) and Gradient-Based Optimization (GBO) for extended target volumes in Total Body Irradiation (TBI). The focus is on overlapping regions using the Rando Phantom. The study evaluates dose distribution, conformity, homogeneity, and sensitivity to positional deviations.

View Article and Find Full Text PDF