Design and Production of Hybrid Antigens for Targeting Integral Outer Membrane Proteins in Gram-Negative Bacteria.

Methods Mol Biol

Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.

Published: November 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Metal ion transporters in the outer membrane of gram-negative bacteria that are responsible for acquiring iron and zinc are attractive vaccine targets due to their essential function. The core function is mediated by an integral outer membrane TonB-dependent transporter (TBDT) that mediates the transport of the metal ion across the outer membrane. Some TBDTs also have a surface lipoprotein (SLP) that assists in the efficient capture of the metal ion-containing host protein from which the metal ion is extracted. The challenges in producing the integral outer membrane protein for a commercial subunit vaccine prompted us to develop a hybrid antigen strategy in which surface loops of the TBDT are displayed on the lipoprotein, which can readily be produced as a soluble protein. The focus of this chapter will be on the methods for production of hybrid antigens and evaluating the immune response they elicit.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-1900-1_8DOI Listing

Publication Analysis

Top Keywords

outer membrane
20
integral outer
12
metal ion
12
production hybrid
8
hybrid antigens
8
gram-negative bacteria
8
outer
5
membrane
5
design production
4
antigens targeting
4

Similar Publications

The parasitic protozoan Trypanosoma brucei has a single mitochondrial nucleoid, anchored to the basal body of the flagellum via the tripartite attachment complex (TAC). The detergent-insoluble TAC is essential for mitochondrial genome segregation during cytokinesis. The TAC assembles de novo in a directed way from the probasal body towards the kDNA.

View Article and Find Full Text PDF

Wnt proteins are critical signaling molecules in developmental processes across animals. Despite intense study, their evolutionary roots have remained enigmatic. Using sensitive sequence analysis and structure modeling, we establish that the Wnts are part of a vast assemblage of domains, the Lipocone superfamily, defined here for the first time.

View Article and Find Full Text PDF

Immune checkpoint inhibitors (ICIs) can re-active the immune response and induce a complete response in mismatch repair-deficient and microsatellite instability-high (dMMR/MSI-H) colorectal cancer (CRC). However, most CRCs exhibit proficient mismatch repair and microsatellite stable (pMMR/MSS) phenotypes with limited immunotherapy response because of sparse intratumoral CD8 T-lymphocyte infiltration. Cellular senescence has been reported to involve immune cell infiltration through a senescence-associated secretory phenotype (SASP).

View Article and Find Full Text PDF

Genetic predisposition and environmental factors, including psychological stress, play prominent roles in driving the development and progression of colorectal neoplasms. However, the mechanisms through which chronic stress drives the progression of colorectal neoplasm remain unclear. The gut microbiota is closely linked to chronic psychological stress (chronic stress) and colorectal neoplasms.

View Article and Find Full Text PDF

The bacterial OMP amyloids modulate α-synuclein and amyloid-β aggregation.

Int J Biol Macromol

September 2025

Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia; Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology Russian Academy of Sciences, 4 Tikhoretsky ave., 194064, St. Petersburg, Russia. Electronic address:

Growing evidence links gut microbiota to neurodegenerative diseases, yet direct molecular interactions between bacterial and host amyloid proteins remain incompletely understood. Bacterial amyloids represent an understudied yet potentially critical component of gut-brain communication in neurodegeneration. Here, we provide the first investigation of whether amyloids formed by outer membrane proteins (OMPs) of enterobacteria can modulate neurodegeneration-associated protein aggregation.

View Article and Find Full Text PDF