98%
921
2 minutes
20
We show that the one-dimensional discrete nonlinear Schrödinger chain (DNLS) at finite temperature has three different dynamical regimes (ultralow-, low-, and high-temperature regimes). This has been established via (i) one-point macroscopic thermodynamic observables (temperature T, energy density ε, and the relationship between them), (ii) emergence and disappearance of an additional almost conserved quantity (total phase difference), and (iii) classical out-of-time-ordered correlators and related quantities (butterfly speed and Lyapunov exponents). The crossover temperatures T_{l-ul} (between low- and ultra-low-temperature regimes) and T_{h-l} (between the high- and low-temperature regimes) extracted from these three different approaches are consistent with each other. The analysis presented here is an important step forward toward the understanding of DNLS which is ubiquitous in many fields and has a nonseparable Hamiltonian form. Our work also shows that the different methods used here can serve as important tools to identify dynamical regimes in other interacting many-body systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.104.044136 | DOI Listing |
Phys Rev Lett
August 2025
Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA.
Models of how things spread often assume that transmission mechanisms are fixed over time. However, social contagions-the spread of ideas, beliefs, innovations-can lose or gain in momentum as they spread: ideas can get reinforced, beliefs strengthened, products refined. We study the impacts of such self-reinforcement mechanisms in cascade dynamics.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
University of York, School of Physics, Engineering and Technology, York YO10 5DD, United Kingdom.
We propose a model that is able to reproduce the type-II ultrafast demagnetization dynamics observed in 2D magnets. The spin system is coupled to the electronic thermal bath and is treated with atomistic spin dynamics, while the electron and phonon heat baths are described phenomenologically by coupled equations via the two-temperature model. Our proposed two-temperature model takes into account the effect of the heated substrate, which for 2D systems results in a slow demagnetization regime.
View Article and Find Full Text PDFChaos
September 2025
Instituto de Física, Universidade Federal de Alagoas, Maceió, Alagoas 57072-970, Brazil.
Neuronal heterogeneity, characterized by a multitude of spiking neuronal patterns, is a widespread phenomenon throughout the nervous system. In particular, the brain exhibits strong variability among inhibitory neurons. Despite the huge neuronal heterogeneity across brain regions, which in principle could decrease synchronization due to differences in intrinsic neuronal properties, cortical areas coherently oscillate during various cognitive tasks.
View Article and Find Full Text PDFGlob Chang Biol
September 2025
Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands.
Droughts are increasing with climate change, affecting the functioning of terrestrial ecosystems and limiting their capacity to mitigate rising atmospheric CO levels. However, there is still large uncertainty on the long-term impacts of drought on ecosystem carbon (C) cycling, and how this determines the effect of subsequent droughts. Here, we aimed to quantify how drought legacy affects the response of a heathland ecosystem to a subsequent drought for two life stages of Calluna vulgaris resulting from different mowing regimes.
View Article and Find Full Text PDFJ Environ Manage
September 2025
College of chemistry and chemical Engineering, Ocean University of China, Qingdao, China. Electronic address:
Tidal estuaries serve as critical zones for biogeochemical connectivity between terrestrial and oceanic ecosystems. With climate change magnifying the impact of flood events on riverine system, dissolved organic matter (DOM) cycling, the largest reactive elemental pool in ecosystems, in tidal estuaries tend to be more complex and remain poorly understood. To address this gap, the response of DOM dynamics to flood events in a typical tidal estuary was explored.
View Article and Find Full Text PDF