98%
921
2 minutes
20
Vaccination to prevent infectious disease is one of the most successful public health interventions ever developed. And yet, variability in individual vaccine effectiveness suggests that a better mechanistic understanding of vaccine-induced immune responses could improve vaccine design and efficacy. We have previously shown that protective antibody levels could be elicited in a subset of recipients with only a single dose of the hepatitis B virus (HBV) vaccine and that a wide range of antibody levels were elicited after three doses. The immune mechanisms responsible for this vaccine response variability is unclear. Using single cell RNA sequencing of sorted innate immune cell subsets, we identified two distinct myeloid dendritic cell subsets (NDRG1-expressing mDC2 and CDKN1C-expressing mDC4), the ratio of which at baseline (pre-vaccination) correlated with the immune response to a single dose of HBV vaccine. Our results suggest that the participants in our vaccine study were in one of two different dendritic cell dispositional states at baseline - an NDRG2-mDC2 state in which the vaccine elicited an antibody response after a single immunization or a CDKN1C-mDC4 state in which the vaccine required two or three doses for induction of antibody responses. To explore this correlation further, genes expressed in these mDC subsets were used for feature selection prior to the construction of predictive models using supervised canonical correlation machine learning. The resulting models showed an improved correlation with serum antibody titers in response to full vaccination. Taken together, these results suggest that the propensity of circulating dendritic cells toward either activation or suppression, their "dispositional endotype" at pre-vaccination baseline, could dictate response to vaccination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588842 | PMC |
http://dx.doi.org/10.3389/fimmu.2021.690470 | DOI Listing |
J Clin Invest
September 2025
The University of Texas at Austin, Austin, United States of America.
Background: Following SARS-CoV-2 infection, ~10-35% of COVID-19 patients experience long COVID (LC), in which debilitating symptoms persist for at least three months. Elucidating biologic underpinnings of LC could identify therapeutic opportunities.
Methods: We utilized machine learning methods on biologic analytes provided over 12-months after hospital discharge from >500 COVID-19 patients in the IMPACC cohort to identify a multi-omics "recovery factor", trained on patient-reported physical function survey scores.
Age Ageing
August 2025
Department of Nursing Health Services Research, Graduate School of Health Care Sciences, Institute of Science Tokyo, Yushima, Bunkyo-ku, Tokyo, Japan.
Background: Little is known about how ambulatory care sensitive condition (ACSC)-related readmissions can be reduced in acute care settings.
Objective: This study examined the association between transitional care for hospitalised older patients with ACSC and ACSC-related readmissions.
Methods: This retrospective observational cohort study included patients aged 65 years and older admitted with ACSC as the primary diagnosis from 1 April 2022 to 31 January 2023, using linked data from the Diagnosis Procedure Combination and the medical functions of the hospital beds database.
Infect Immun
September 2025
School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, USA.
Cell death mechanisms play a fundamental role in mycobacterial pathogenesis. We critically reviewed 94 research manuscripts, 44 review articles, and 4 book chapters to analyze important discoveries, background literature, and potential shortcomings in the field. The focus of this review is the pathogen (Mtb) and other Mtb and complex microorganisms.
View Article and Find Full Text PDF