Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Emission measurements are available in the literature for a wide variety of field burns and laboratory experiments, although previous studies do not always isolate the effect of individual features such as fuel moisture content (FMC). This study explores the effect of FMC on gaseous and particulate emissions from flaming and smouldering combustion of four different wildland fuels found across the United States. A custom linear tube-heater apparatus was built to steadily produce emissions in different combustion modes over a wide range of FMC. Results showed that when compared with flaming combustion, smouldering combustion showed increased emissions of CO, particulate matter and unburned hydrocarbons, corroborating trends in the literature. CO and particulate matter emissions in the flaming mode were also significantly correlated with FMC, which had little influence on emissions for smouldering mode combustion, when taking into account the dry mass of fuel burned. These variations occurred for some vegetative fuel species but not others, indicating that the type of fuel plays an important role. This may be due to the chemical makeup of moist and recently live fuels, which is discussed and compared with previous measurements in the literature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8580516PMC
http://dx.doi.org/10.1071/WF20118DOI Listing

Publication Analysis

Top Keywords

moisture content
8
measurements literature
8
emissions flaming
8
smouldering combustion
8
particulate matter
8
emissions
6
combustion
6
fuel
5
content fuel
4
fuel type
4

Similar Publications

A 60-day research was conducted to evaluate the influence of dietary fish oil (FO) and selenium nanoparticles (SeNPs) on performance of juveniles (2.4 ± 0.0 g) reared in seawater (SW) or hypersaline (HS) water conditions.

View Article and Find Full Text PDF

One-time double-layer placement of controlled-release urea enhances wheat yield, nitrogen use efficiency and mitigates NO emissions.

Front Plant Sci

August 2025

Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs of China, Beijing, China.

Simultaneously enhancing the crop yield and reducing nitrous oxide (NO) emissions presents a critical challenge in sustainable agriculture. The application of nitrogen (N) fertilizer is a key strategy to enhance crop yield. However, conventional N application practices often lead to excessive soil N accumulation, insufficient crop N uptake and elevated greenhouse gas (GHG) emissions.

View Article and Find Full Text PDF

The microbial and physicochemical changes of hawthorn sticks in four packaging, including the traditional metallic twist tie packaging with biaxially oriented polypropylene and cast polypropylene, and vacuum packaging (VP), deoxygenated packaging (DP), and plastic packaging (PP) with polyamide/polyethylene (PA/PE) composite film, were compared during the storage at controlled temperature and relative humidity. After 60 days of storage, the control group showed an unacceptable increase in molds (0.65 log CFU/g) and maximum physicochemical losses (25% of moisture content and 72.

View Article and Find Full Text PDF

Quality changes in thermally-treated stingless bee honey during room temperature storage.

Food Sci Biotechnol

October 2025

Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Andalas, Padang, 25163 Indonesia.

This study examined quality changes in () stingless bee honey subjected to thermal treatment and stored at room temperature. Honey was heated at 55, 75, and 90 °C for 10 or 20 min and then stored at 30 °C for 40 days. Physicochemical parameters including moisture content, total soluble solids (TSS), pH, acidity, viscosity, hydroxymethylfurfural (HMF), color (L*, a*, b*), antioxidant activity, and total phenolic content were analyzed.

View Article and Find Full Text PDF

Physicochemical properties and sensory acceptability of acai sorbet enriched with waste flour from Amazonian fruits.

J Food Sci Technol

October 2025

Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPEL), Prédio 31, Sala 103, Capão do Leão, Pelotas, RS 960010-900 Brazil.

Abstract: This study aimed to evaluate the physicochemical properties of fruit waste flour (FWF) composed of pineapple, acerola, and passion fruit (adapted from the Brazilian Amazon) and its impact on the physicochemical and sensory attributes of edible ice cream. FWF was measured for parameters of the proximate composition, total fibers, total phenolic content, and antioxidant capacity. Three formulations of sorbet-type edible ice cream were developed: one addition with FWF (AFWF), one without FWF (WFWF), and a commercial standard (CS) sample; these were characterized based on the proximate composition, total fibers, pH, total acidity, water activity, instrumental color, and sensory acceptance (flavor, texture, and overall appearance).

View Article and Find Full Text PDF