98%
921
2 minutes
20
As other arbuscular mycorrhizal fungi, Gigaspora margarita contains unculturable endobacteria in its cytoplasm. A cured fungal line has been obtained and showed it was capable of establishing a successful mycorrhizal colonization. However, previous OMICs and physiological analyses have demonstrated that the cured fungus is impaired in some functions during the pre-symbiotic phase, leading to a lower respiration activity, lower ATP, and antioxidant production. Here, by combining deep dual-mRNA sequencing and proteomics applied to Lotus japonicus roots colonized by the fungal line with bacteria (B+) and by the cured line (B-), we tested the hypothesis that L. japonicus (i) activates its symbiotic pathways irrespective of the presence or absence of the endobacterium, but (ii) perceives the two fungal lines as different physiological entities. Morphological observations confirmed the absence of clear endobacteria-dependent changes in the mycorrhizal phenotype of L. japonicus, while transcript and proteomic datasets revealed activation of the most important symbiotic pathways. They included the iconic nutrient transport and some less-investigated pathways, such as phenylpropanoid biosynthesis. However, significant differences between the mycorrhizal B+/B- plants emerged in the respiratory pathways and lipid biosynthesis. In both cases, the roots colonized by the cured line revealed a reduced capacity to activate genes involved in antioxidant metabolism, as well as the early biosynthetic steps of the symbiotic lipids, which are directed towards the fungus. Similar to its pre-symbiotic phase, the intraradical fungus revealed transcripts related to mitochondrial activity, which were downregulated in the cured line, as well as perturbation in lipid biosynthesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9300078 | PMC |
http://dx.doi.org/10.1111/tpj.15578 | DOI Listing |
J Plant Physiol
September 2025
Department of Plant Physiology, University of Granada, Granada, Spain. Electronic address:
Legumes form symbioses with nitrogen-fixing bacteria, well studied metabolically but less so in terms of respiration. Symbiotic nitrogen fixation demands high respiratory ATP and carbon skeletons, linking nitrogen assimilation and both NADH- and ATP-dependent process to mitochondrial respiration. The plant mitochondrial electron transport chain contains two terminal oxidases that differentially fractionate against O, providing estimations in vivo of the energy efficiency of respiration.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea. Electronic address:
Natural protein-derived peptides are gaining attention for their potential in promoting health, particularly in nutraceutical formulations. In this study, calcium-binding peptides from lotus seed were produced and characterized using UV, FT-IR, Raman, and EDS, and SEM. The calcium-peptide (LSPIH-Ca) complex was subjected to its osteogenic effect in murine bone marrow-derived mesenchymal stem cells (D1 MSCs).
View Article and Find Full Text PDFPlant J
September 2025
State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Fores
Floral thermogenesis in lotus (Nelumbo nucifera) is a highly energy-intensive process, requiring substantial metabolic reconfiguration and substrate input. However, the mechanisms coordinating energy substrate supply during this process remain unclear. Here, we integrated microscale proteomics, time-series transcriptomics, and mitochondrial feeding assays to elucidate the substrate provisioning strategies supporting thermogenesis in lotus receptacles.
View Article and Find Full Text PDFSmall
September 2025
Institute of Interfaces and Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany.
Repellent surfaces provide resistance to biofouling, ice formation, bacteria adhesion, or corrosion. Inspired by the hierarchical structure of the lotus leaf, such surfaces minimize water adhesion through micro- and nanostructuring. Conventional fabrication methods to mimic the lotus leaf often involve problematic fluorinated compounds, sophisticated preparation conditions, or lack mechanical robustness.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
September 2025
Department of Medical Pharmacology, Faculty of Medicine, Minia University, Minia, 61519, Egypt.
The aim of the current study is to identify the possible protective effect of rupatadine (RUP) on ovarian ischemia reperfusion (OIR) in rats. RUP was administered in the presence and absence of OIR. Thirty-two adult Wistar albino female rats were randomly arranged into four groups: Sham, RUP (6 mg/kg/day) for 14 days, OIR and OIR + RUP groups.
View Article and Find Full Text PDF