Bone marrow adiposity during pathologic bone loss: molecular mechanisms underlying the cellular events.

J Mol Med (Berl)

Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, China.

Published: February 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bone marrow (BM) is a heterogeneous niche where bone marrow stromal cells (BMSCs), osteoblasts, osteoclasts, adipocytes, hematopoietic cells, and immune cells coexist. The cellular composition of BM changes with various pathophysiological states. A reduction in osteoblast number and a concomitant increase in adipocyte number in aging and pathological conditions put bone marrow adipose tissue (BMAT) into spotlight. Accumulating evidence strongly supports that an overwhelming production of BMAT is a major contributor to bone loss disorders. Therefore, BMAT-targeted therapy can be an efficient and feasible intervention for osteoporosis. However, compared to blocking bone-destroying molecules produced by BMAT, suppressing BMAT formation is theoretically a more effective and fundamental approach in treating osteoporotic bone diseases. Thus, a deep insight into the molecular basis underlying increased BM adiposity during pathologic bone loss is critical to formulate strategies for therapeutically manipulating BMAT. In this review, we comprehensively summarize the molecular mechanisms involved in adipocyte differentiation of BMSCs as well as the interaction between bone marrow adipocytes and osteoclasts. More importantly, we further discuss the potential clinical implications of therapeutically targeting the upstream of BMAT formation in bone loss diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00109-021-02164-1DOI Listing

Publication Analysis

Top Keywords

bone marrow
20
bone loss
16
bone
10
adiposity pathologic
8
pathologic bone
8
molecular mechanisms
8
bmat formation
8
bmat
6
marrow adiposity
4
loss
4

Similar Publications

Langerhans cell sarcoma (LCS) is an aggressive malignant neoplasm with a Langerhans cell immunophenotype and high-grade cytological features. Occasionally, it can coexist with other hematopoietic neoplasms with proven clonal relationship. Most of these neoplasms were found to be of lymphoid origin.

View Article and Find Full Text PDF

Adoptive cellular therapies in multiple myeloma.

Best Pract Res Clin Haematol

September 2025

Department of Personalized Medicine and Rare Diseases, Medfuture Institute for Biomedical Research - Department of Hematology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Hematology, Ion Chiricuta Cancer Center, Cluj Napoca, Romania. Electronic address:

Plasma cell myeloma (multiple myeloma) is a blood cancer characterized by the clonal proliferation of plasma cells in the bone marrow. Treatment strategies evolve year by year, new drugs getting Food and Drug Administration (FDA)-approved each year. Chimeric antigen receptor (CAR) therapies are an advanced form of immunotherapy that engineer T cells to recognize and destroy cancer cells.

View Article and Find Full Text PDF

Adoptive cellular therapies in non-Hodgkin lymphomas.

Best Pract Res Clin Haematol

September 2025

Department of Personalized Medicine and Rare Diseases, Medfuture Institute for Biomedical Research - Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Hematology, Ion Chiricuta Cancer Center, Cluj Napoca, Romania. Electronic address: c

Lymphomas are a group of malignant proliferations of B, T or NK-lymphoid cells at different stages of maturation. While they primarily occur in lymph nodes or lymphatic tissues, they can also involve bone marrow, blood, or other organs. Despite advances in treatment, many patients experience relapse, or develop refractory disease, prompting the development of new therapies.

View Article and Find Full Text PDF

The Optimal Adjuvant Reinfusion Strategy for Aplastic Anemia: Umbilical Cord Blood or Mesenchymal Stem Cells? A Single-Center Retrospective Study.

Transplant Cell Ther

September 2025

Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine); Hangzhou, China; The First School of Clinical Medicine, Zhejiang Chinese Medical University; Hangzhou, China. Electronic address: szyyblood@1

Aplastic anemia (AA) is a bone marrow failure disorder treated with allogeneic hematopoietic stem cell transplantation (allo-HSCT). Despite improvements in conditioning regimens and GVHD prophylaxis, graft failure and GVHD remain critical challenges. This study compared the efficacy of mesenchymal stem cells (MSCs) and umbilical cord blood cells (UCBs) as adjunctive therapies in 184 AA patients undergoing allo-HSCT.

View Article and Find Full Text PDF

GLP-1R activation restores Gas6-driven efferocytosis in senescent foamy macrophages to promote neural repair.

Redox Biol

September 2025

Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Medical School of Nantong University, Nantong, Jiangsu, 226000, China; Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu, 226000, China. Elec

Spinal cord injury (SCI) is a devastating condition characterized by the accumulation of myelin debris (MD), persistent neuroinflammation, and impaired neural regeneration. Although macrophages are pivotal for MD clearance, the impact of excessive MD phagocytosis on macrophage phenotype and function remains poorly understood. Building upon our prior evidence that exendin-4 (Ex-4), a glucagon-like peptide-1 receptor (GLP-1R) agonist, mitigates microglia-driven neuroinflammation post-SCI, this study elucidates the therapeutic efficacy and underlying mechanisms of Ex-4 in alleviating macrophage senescence, restoring efferocytotic capacity, and facilitating neural repair.

View Article and Find Full Text PDF