98%
921
2 minutes
20
Quinoa (Chenopodium quinoa Willd.) has gained significant popularity among agricultural scientists and farmers throughout the world due to its high nutritive value. It is cultivated under a range of soil and climatic conditions; however, late sowing adversely affects its productivity and yield due to shorter growth period. Inorganic and organic phyto-stimulants are promising for improving growth, development, and yield of field crops under stressful environments. Field experiments were conducted during crop cultivation seasons of 2016-17 and 2017-18, to explore the role of inorganic (hydrogen peroxide and ascorbic acid) and organic [moringa leaf extract (MLE) and sorghum water extract (sorgaab)] phyto-stimulants in improving growth and productivity of quinoa (cultivar UAF-Q7). Hydrogen peroxide at 100 μM, ascorbic acid at 500 μM, MLE at 3% and sorgaab at 3% were exogenously applied at anthesis stage of quinoa cultivated under normal (November 21st and 19th during 2016 and 2017) and late-sown (December 26th and 25th during 2016 and 2017) conditions. Application of inorganic and organic phyto-stimulants significantly improved biochemical, physiological, growth and yield attributes of quinoa under late sown conditions. The highest improvement in these traits was recorded for MLE. Application of MLE resulted in higher chlorophyll a and b contents, stomatal conductance, and sub-stomatal concentration of CO2 under normal and late-sowing. The highest improvement in soluble phenolics, anthocyanins, free amino acids and proline, and mineral elements in roots, shoot and grains were observed for MLE application. Growth attributes, including plant height, plant fresh weight and panicle length were significantly improved with MLE application as compared to the rest of the treatments. The highest 1000-grain weight and grain yield per plant were noted for MLE application under normal and late-sowing. These findings depict that MLE has extensive crop growth promoting potential through improving physiological and biochemical activities. Hence, MLE can be applied to improve growth and productivity of quinoa under normal and late-sown conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8575295 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0259214 | PLOS |
PLoS One
September 2025
Department of Mathematics, Faculty of Science and Information Technology, Jadara University, Irbid, Jordan.
This study introduces the Wrapped Epanechnikov Exponential Distribution (WEED), a novel circular distribution derived from the Epanechnikov exponential distribution. The probability density function and cumulative distribution function are presented, together with a comprehensive analysis of its properties and parameters, including the characteristic function and trigonometric moments. Parameters are estimated using maximum likelihood estimation (MLE).
View Article and Find Full Text PDFEnviron Technol
September 2025
Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, CDMX, México.
This research investigates the behavior of key components within aerobic and anoxic bioreactors in Biological Nitrogen Removal (BNR) bioprocesses. A mathematical model based on the Modified Ludzack-Ettinger (MLE) configuration is proposed. The model comprises an ensemble of ten differential equations derived from mass balances in the MLE system, complemented with a set of biokinetic models.
View Article and Find Full Text PDFStatistical estimation methods for localization microscopy (LM) estimate emitter locations using a parameterized statistical model presumed for the data, enabling derivations of estimators and theoretical accuracy bounds. The most widely used performance bound is the Cramér-Rao lower bound (CRLB), which provides a lower bound on the error covariance of any unbiased estimator of the model parameters (i.e.
View Article and Find Full Text PDFSyst Biol
August 2025
Computer Science Division, University of California, Berkeley, USA.
Branch length estimation is a fundamental problem in Statistical Phylogenetics and a core component of tree reconstruction algorithms. Traditionally, general time-reversible mutation models are employed, and many software tools exist for this scenario. With the advent of CRISPR/Cas9 lineage tracing technologies, there has been significant interest in the study of branch length estimation under irreversible mutation models.
View Article and Find Full Text PDFJ Ethnopharmacol
August 2025
Therapeutic Chemistry Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki, 12622, Cairo, Egypt. Electronic address:
Ethnopharmacological Relevance: Moringa oleifera Lam., known as the "miracle tree", has been applauded as a complementary medicine, owing to its broad-spectrum health benefits.
Aim: This study provides novel insights into the unrecognized risk associated with the use of high-dose M.