Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Branch length estimation is a fundamental problem in Statistical Phylogenetics and a core component of tree reconstruction algorithms. Traditionally, general time-reversible mutation models are employed, and many software tools exist for this scenario. With the advent of CRISPR/Cas9 lineage tracing technologies, there has been significant interest in the study of branch length estimation under irreversible mutation models. Under the CRISPR/Cas9 mutation model, irreversible mutations - in the form of DNA insertions or deletions - are accrued during the experiment, which are then read out at the single-cell level to reconstruct the cell lineage tree. However, most of the analyses of CRISPR/Cas9 lineage tracing data have so far been limited to the reconstruction of single-cell tree topologies, which depict lineage relationships between cells, but not the amount of time that has passed between ancestral cell states and the present. Time-resolved trees, known as chronograms, would allow one to study the evolutionary dynamics of cell populations at an unprecedented level of resolution. Indeed, time-resolved trees would reveal the timing of events on the tree, the relative fitness of subclones, and the dynamics underlying phenotypic changes in the cell population - among other important applications. In this work, we introduce the first scalable and accurate method to refine any given single-cell tree topology into a single-cell chronogram by estimating its branch lengths. To do this, we perform regularized maximum likelihood estimation under a general irreversible mutation model, paired with a conservative version of maximum parsimony that reconstructs only the ancestral states that we are confident about. To deal with the particularities of CRISPR/Cas9 lineage tracing data - such as double-resection events which affect runs of consecutive sites - we avoid making our model more complex and instead opt for using a simple but effective data encoding scheme. Similarly, we avoid explicitly modeling the missing data mechanisms - such as heritable missing data - by instead assuming that they are missing completely at random. We stabilize estimates in low-information regimes by using a simple penalized version of maximum likelihood estimation (MLE) using a minimum branch length constraint and pseudocounts. All this leads to a convex MLE problem that can be readily solved in seconds with off-the-shelf convex optimization solvers. We benchmark our method using both simulations and real lineage tracing data, and show that it performs well on several tasks, matching or outperforming competing methods such as TiDeTree and LAML in terms of accuracy, while being 10 ∼ 100 × faster. Notably, our statistical model is simpler and more general, as we do not explicitly model the intricacies of CRISPR/Cas9 lineage tracing data. In this sense, our contribution is twofold: (1) a fast and robust method for branch length estimation under a general irreversible mutation model, and (2) a data encoding scheme specific to CRISPR/Cas9-lineage tracing data which makes it amenable to the general model. Our branch length estimation method, which we call 'ConvexML', should be broadly applicable to any evolutionary model with irreversible mutations (ideally, with high diversity) and an approximately ignorable missing data mechanism. 'ConvexML' is available through the convexml open source Python package.

Download full-text PDF

Source
http://dx.doi.org/10.1093/sysbio/syaf054DOI Listing

Publication Analysis

Top Keywords

branch length
24
lineage tracing
24
length estimation
20
tracing data
20
irreversible mutation
16
crispr/cas9 lineage
16
mutation models
12
mutation model
12
missing data
12
data
10

Similar Publications

Purpose: This study aims to evaluate the morphological features of the levator palpebrae superioris muscle (LPS) and the variations in the distribution of the oculomotor nerve in the muscle.

Methods: 100 bilateral orbits from 50 cadavers were included in our study. In our study, the medial, lateral, and middle length, width, and thickness of the LPS were measured from 3 different points and recorded.

View Article and Find Full Text PDF

Purpose: This study aimed to report and characterize bilateral renal artery (RA) variations observed during cadaveric dissection and to evaluate these findings in the context of embryological development and morphometric analysis.

Case Presentation: During routine anatomical dissection of an 87-year-old Caucasian male cadaver, bilateral variations in the renal arteries were identified. On the right side, two renal arteries (RRA1 and RRA2) were observed, each giving rise to presegmental and segmental branches.

View Article and Find Full Text PDF

Bonding-Guided Anisotropic Growth of Quasi-1D MXSe Thermoelectric Nanowires.

Small

September 2025

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.

Quasi-1D van der Waals materials have emerged as promising candidates for flexible electronic and thermoelectric applications due to their intrinsic anisotropy, narrow band gaps, and mechanical flexibility. Herein, MXSe (M = Nb, Ta, X = Pd, Pt) nanowires are studied to understand the bonding-directed growth mechanism. Bond valence sums and binding energy analyses reveal that weak X2-Se2 interactions perpendicular to the c-axis facilitate anisotropic growth.

View Article and Find Full Text PDF

The present review summarizes recent information on the formation and fine structure of epidermal microornamentation and adhesive setae in scale pads of the tail in some arboreal geckos. The study utilizes transmission and scanning electron microscopy, in conjunction with immunolabeling, to detect the main proteins of the microornamentation, known as Corneous Beta Proteins. These are special small proteins with a central region containing beta-sheets that form most of the corneous material of scales and pads.

View Article and Find Full Text PDF

E3 ubiquitin ligases regulate the cellular proteome proteasome-dependent protein degradation; however, there exist limited studies outlining their non-canonical functions. RNA-binding ubiquitin ligases (RBULs) represent a subset of E3 ligases that harbour RNA-binding domains, making them uniquely positioned to function as both RNA-binding proteins and E3 ligases. Our initial microarray screen for E3 ligases from mouse cortical neural progenitor cells identified MEX3B, a known RNA-binding ubiquitin ligase, to be differentially expressed.

View Article and Find Full Text PDF