Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

When muscles contract and change length, they also bulge in thickness and/or width. These shape changes extend the functional range of skeletal muscle by allowing individual muscle fibres to shorten at different velocities than the whole muscle. Age-related differences in muscle architecture and tissue properties influence how older muscles change shape and architecture during contractions, yet this remains unexplored in active older adults. The aim of this study was to quantify and compare in vivo muscle architecture and shape changes in the medial (MG) and lateral (LG) gastrocnemii of active younger and older adults during isometric plantarflexion contractions. Fifteen younger (21 ± 2y) and 15 older (70 ± 3y) participants performed contractions at 20%, 40%, 60%, 80%, and 100% of maximum voluntary contraction (MVC). B-mode ultrasound was used to measure fascicle length, pennation angle and muscle thickness in MG and LG. We found no influence of age on changes in normalized fascicle length and thickness, or absolute change in pennation angle during contractions. With increasing contraction level, MG and LG fascicle shortening (P < 0.001) and rotation (P < 0.001) increased. However, the change in muscle thickness increased at higher contraction levels in LG, and not MG. Similarly, increased changes in pennation angle were associated with increased muscle thickness in LG, but not MG at 80% and 100% MVC. These results suggest that (1) gastrocnemii shape changes are similar in active older and younger adults at matched levels of effort, and (2) the relationship between pennation angle and muscle thickness can differ between synergistics (LG and MG) and across contraction levels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2021.110823DOI Listing

Publication Analysis

Top Keywords

muscle architecture
12
shape changes
12
older adults
12
architecture shape
8
gastrocnemii active
8
active younger
8
younger older
8
fascicle length
8
pennation angle
8
muscle
7

Similar Publications

Advances in Musculoskeletal Modeling of the Thoraco-Lumbar Spine: A Comprehensive Systematic Review.

Ann Biomed Eng

September 2025

LaBS - Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy.

Understanding spine biomechanics is essential for maintaining posture under static and dynamic conditions, relying on a balance of muscular and gravitational forces. Computational musculoskeletal (MSK) models are increasingly being used in biomechanical research as non-invasive alternatives to in vivo and in vitro methods. Two main MSK modeling strategies are multibody (MB) models, which simplify the spine using rigid vertebrae and intervertebral joints to study muscle recruitment, and finite element (FE) models, which provide detailed tissue representation but often rely on oversimplified loading conditions.

View Article and Find Full Text PDF

Biomechanical Properties of Long Bones and Degrees of Morphological Integration Between the Fore and Hindlimbs in Anuran Species With Different Habitat Uses.

J Exp Zool B Mol Dev Evol

September 2025

Cátedra de Biología General, Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, Instituto de Biodiversidad Neotropical CONICET-UNT, San Miguel de Tucumán, Tucumán, Argentina.

The mechanical loads from muscle contraction and gravity affect the biomechanical properties of long-bone limbs, varying according to the functional demands of each limb. In anurans, both limbs are used for locomotion, but the hindlimbs generate higher energy for jumping or swimming, and the forelimbs serve additional purposes (e.g.

View Article and Find Full Text PDF

Purpose: To develop an in vitro model that mimics aspects of corneal healing in humans for uncovering key mechanisms involved in the mechanisms involved in the healing and scarring processes.

Methods: As part of the healing matrix, TGF-β1-induced and corneal-derived myofibroblasts were cultured in fibrin hydrogels with configurations that recapitulate the healthy (aligned) and wounded (random) microenvironment of the cornea.

Results: Evaluation of cellular alpha smooth muscle actin (α-SMA) and collagen hybridizing peptide (CHP) showed cell and matrix alignment, respectively.

View Article and Find Full Text PDF

A novel contralateral ulnar nerve transfer model for selective muscle reinnervation in upper motor neuron syndrome.

Neural Regen Res

September 2025

Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria.

Stroke and traumatic brain injury lead to upper motor neuron syndrome, which is characterized by muscle spasticity or paresis of varying severity depending on the lesion's location and extent. Current treatments are mostly symptomatic with limited efficacy and significant side effects. Nerve transfer techniques, such as the contralateral L4 ventral root transfer in animal models and C7 root transfer in both animal and clinical studies, have been shown to reduce spasticity and improve function in upper motor neuron syndrome; however, they lack selectivity.

View Article and Find Full Text PDF

Wound healing is an intricate physiological process, with acute and chronic wounds imposing significant burdens on the healthcare systems worldwide. This study reports the development fully biodegradable silica gel fiber (SGF) scaffolds for enhanced skin tissue regeneration. Three types of wound dressings, differing in their structure, are fabricated: pressure-spun silica gel µ-fibers (pSGF) allowing cell penetration, electrospun sub-µ silica gel fibers (eSGF) mimicking an extracellular matrix (ECM)-like sub-µ-structure with narrow mesh sizes allowing no cell ingrowth, and a hybrid scaffold combining both fiber types (peSGF) that combines the advantages of both structures.

View Article and Find Full Text PDF