Synthesis and Processing of Nanomaterials Mediated by Living Organisms.

Angew Chem Int Ed Engl

Group of Carbon Nanostructures and Nanotechnology (G-CNN), Instituto de Carboquímica, ICB-CSIC, C/ Miguel Luesma Castán 4, 50018, Zaragoza, Spain.

Published: February 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nanomaterials offer exciting properties and functionalities. However, their production and processing frequently involve complex methods, cumbersome equipment, harsh conditions, and hazardous media. The capability of organisms to accomplish this using mild conditions offers a sustainable, biocompatible, and environmentally friendly alternative. Different nanomaterials such as metal nanoparticles, quantum dots, silica nanostructures, and nanocellulose are being synthesized increasingly through living entities. In addition, the bionanofabrication potential enables also the in situ processing of nanomaterials inside biomatrices with unprecedented outcomes. In this Minireview we present a critical state-of-the-art vision of current nanofabrication approaches mediated by living entities (ranging from unicellular to higher organisms), in order to expand this knowledge and scrutinize future prospects. An efficient interfacial interaction at the nanoscale by green means is within reach through this approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9300077PMC
http://dx.doi.org/10.1002/anie.202113286DOI Listing

Publication Analysis

Top Keywords

processing nanomaterials
8
mediated living
8
living entities
8
synthesis processing
4
nanomaterials
4
nanomaterials mediated
4
living organisms
4
organisms nanomaterials
4
nanomaterials offer
4
offer exciting
4

Similar Publications

This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.

View Article and Find Full Text PDF

Laser processing in liquids: insights into nanocolloid generation and thin film integration for energy, photonic, and sensing applications.

Beilstein J Nanotechnol

August 2025

Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León. San Nicolás de los Garza, Nuevo León, 66455, México.

Nanoparticles in their pure colloidal form synthesized by laser-assisted processes such as laser ablation/fragmentation/irradiation/melting in liquids have attained much interest from the scientific community because of their specialties like facile synthesis, ultra-high purity, biocompatibility, colloidal stability in addition to other benefits like tunable size and morphology, crystalline phases, new compounds and alloys, and defect engineering. These nanocolloids are useful for fabricating different devices mainly with applications in optoelectronics, catalysis, sensors, photodetectors, surface-enhanced Raman spectroscopy (SERS) substrates, and solar cells. In this review article, we describe different methods of nanocolloidal synthesis using laser-assisted processes and corresponding thin film fabrication methods, particularly those utilized for device fabrication and characterization.

View Article and Find Full Text PDF

Sodium-ion batteries (SIBs) are promising alternatives to lithium-ion batteries (LIBs) owing to abundant resources and cost-effectiveness. However, cathode materials face persistent challenges in structural stability, ion kinetics, and cycle life. This review highlights the transformative potential of high-entropy (HE) strategies that leveraging multi-principal element synergies to address these limitations entropy-driven mechanisms.

View Article and Find Full Text PDF

A novel phthalonitrile derivative (a) containing three functional groups (hexyl, aminated ester, phenoxy) was synthesized and subsequently cyclotetramerized in the presence of the corresponding metal chloride salts to obtain hexadeca-substituted metal {M = Cu(II) and Co(II)} phthalocyanines (b and c). The water-soluble phthalocyanines (d and e) were prepared by treating the newly synthesized complexes (b and c) with methyl iodide. Moreover, gold nanoparticles (1) and silver nanoparticles (2) were prepared, and their surfaces were modified with quaternary phthalocyanines (d and e).

View Article and Find Full Text PDF

Ciprofloxacin (CIP), a widely used fluoroquinolone antibiotic, has become a significant contaminant in aquatic environments due to its extensive use and incomplete metabolism. This review comprehensively analyses CIP pollution, including its sources, environmental and health impacts, and removal strategies. Chemical methods such as advanced oxidation processes and physical techniques like adsorption are evaluated for their efficiency in CIP removal.

View Article and Find Full Text PDF