Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tumor cells that preferentially enter circulation include the precursors of metastatic cancer. Previously, we characterized circulating tumor cells (CTC) from patients with breast cancer and identified a signature of genomic regions with recurrent copy-number gains. Through FISH, we now show that these CTC-associated regions are detected within the matched untreated primary tumors of these patients (21% to 69%, median 55.5%, = 19). Furthermore, they are more prevalent in the metastases of patients who died from breast cancer after multiple rounds of treatment (70% to 100%, median 93%, samples = 41). Diversity indices revealed that higher spatial heterogeneity for these regions within primary tumors is associated with increased dissemination and metastasis. An identified subclone with multiple regions gained (MRG clone) was enriched in a posttreatment primary breast carcinoma as well as multiple metastatic tumors and local breast recurrences obtained at autopsy, indicative of a distinct early subclone with the capability to resist multiple lines of treatment and eventually cause death. In addition, multiplex immunofluorescence revealed that tumor heterogeneity is significantly associated with the degree of infiltration of B lymphocytes in triple-negative breast cancer, a subtype with a large immune component. Collectively, these data reveal the functional potential of genetic subclones that comprise heterogeneous primary breast carcinomas and are selected for in CTCs and posttreatment breast cancer metastases. In addition, they uncover a relationship between tumor heterogeneity and host immune response in the tumor microenvironment. SIGNIFICANCE: As breast cancers progress, they become more heterogeneous for multiple regions amplified in circulating tumor cells, and intratumoral spatial heterogeneity is associated with the immune landscape.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9397625PMC
http://dx.doi.org/10.1158/0008-5472.CAN-21-1079DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
circulating tumor
12
tumor cells
12
breast
9
host immune
8
immune response
8
response tumor
8
primary tumors
8
spatial heterogeneity
8
multiple regions
8

Similar Publications

Purpose: Breast cancer remains a significant public health challenge globally, as well as in India, where it is the most frequently diagnosed cancer in females. Significant disparities in incidence, mortality, and access to health care across India's sociodemographically diverse population highlight the need for increased awareness, policy reform, and research.

Design: This review consolidates data from national cancer registries, global cancer databases, and institutional findings from a tertiary care center to examine the epidemiology, clinical challenges, and management gaps specific to India.

View Article and Find Full Text PDF

ObjectiveTo study the implications of implementing artificial intelligence (AI) as a decision support tool in the Norwegian breast cancer screening program concerning cost-effectiveness and time savings for radiologists.MethodsIn a decision tree model using recent data from AI vendors and the Cancer Registry of Norway, and assuming equal effectiveness of radiologists plus AI compared to standard practice, we simulated costs, effects and radiologist person-years over the next 20 years under different scenarios: 1) Assuming a €1 additional running cost of AI instead of the €3 assumed in the base case, 2) varying the AI-score thresholds for single vs. double readings, 3) varying the consensus and recall rates, and 4) reductions in the interval cancer rate compared to standard practice.

View Article and Find Full Text PDF

Background: Among childhood cancer survivors, germline rare variants in autosomal dominant cancer susceptibility genes (AD CSGs) could increase subsequent neoplasm (SNs) risks, but risks for rarer SNs and by age at onset are not well understood.

Methods: We pooled the Childhood Cancer Survivor Study and St Jude Lifetime Cohort (median follow-up = 29.7 years, range 7.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are critical regulators of gene expression in cancer biology, yet their spatial dynamics within tumor microenvironments (TMEs) remain underexplored due to technical limitations in current spatial transcriptomics (ST) technologies. To address this gap, we present STmiR, a novel XGBoost-based framework for spatially resolved miRNA activity prediction. STmiR integrates bulk RNA-seq data (TCGA and CCLE) with spatial transcriptomics profiles to model nonlinear miRNA-mRNA interactions, achieving high predictive accuracy (Spearman's ρ > 0.

View Article and Find Full Text PDF

Objective: This study employs integrated network toxicology and molecular docking to investigate the molecular basis underlying 4-nonylphenol (4-NP)-mediated enhancement of breast cancer susceptibility.

Methods: We integrated data from multiple databases, including ChEMBL, STITCH, Swiss Target Prediction, GeneCards, OMIM and TTD. Core compound-disease-associated target genes were identified through Protein-Protein Interaction (PPI) network analysis.

View Article and Find Full Text PDF