98%
921
2 minutes
20
Characterization of brain networks by diffusion MRI (dMRI) has rapidly evolved, and there are ongoing movements toward data sharing and multi-center studies. To extract meaningful information from multi-center data, methods to correct for the bias caused by scanner differences, that is, harmonization, are urgently needed. In this work, we report the cross-scanner differences in structural network analyses using data from nine traveling subjects (four males and five females, 21-49 years-old) who underwent scanning using four 3T scanners (public database available from the Brain/MINDS Beyond Human Brain MRI project (http://mriportal.umin.jp/)). The reliability and reproducibility were compared to those of data from another set of four subjects (all males, 29-42 years-old) who underwent scan-rescan (interval, 105-147 days) with the same scanner as well as scan-rescan data from the Human Connectome Project database. The results demonstrated that the reliability of the edge weights and graph theory metrics was lower for data including different scanners, compared to the scan-rescan with the same scanner. Besides, systematic differences between scanners were observed, indicating the risk of bias in comparing networks obtained from different scanners directly. We further demonstrate that it is feasible to reduce inter-scanner variabilities while preserving the inter-subject differences among healthy individuals by modeling the scanner effects at the level of network matrices, when traveling-subject data are available for calibration between scanners. The present data and results are expected to serve as a basis for developing and evaluating novel harmonization methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2021.118675 | DOI Listing |
Diagn Interv Radiol
September 2025
Department of Internal Medicine, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea.
Purpose: To evaluate the feasibility of abbreviated liver magnetic resonance imaging (AMRI) with a second-shot arterial phase (SSAP) image for the viability of treated hepatocellular carcinoma (HCC) after non-radiation locoregional therapy (LRT).
Methods: We retrospectively enrolled patients with non-radiation LRT for HCC who underwent the modified gadoxetic acid-enhanced liver MRI protocol, which includes routine dynamic and SSAP imaging after the first and second injection of gadoxetic acid, respectively (6 mL and 4 mL, respectively), and an available reference standard for tumor viability in the treated HCC between March 2021 and February 2022. Two radiologists independently reviewed the full-protocol MRI (FP-MRI) and AMRI with SSAP.
Hum Brain Mapp
September 2025
Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany.
Postoperative aphasia (POA) is a common complication in patients undergoing surgery for language-eloquent lesions. This study aimed to enhance the prediction of POA by leveraging preoperative navigated transcranial magnetic stimulation (nTMS) language mapping and diffusion tensor imaging (DTI)-based tractography, incorporating deep learning (DL) algorithms. One hundred patients with left-hemispheric lesions were retrospectively enrolled (43 developed postoperative aphasia, as the POA group; 57 did not, as the non-aphasia (NA) group).
View Article and Find Full Text PDFBrain Behav
September 2025
Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China.
Background And Purpose: White matter hyperintensity (WMH) impairs cognitive function but is not evident in the early stage, raising the need to explore the underlying mechanism. We aimed to investigate the potential role of network structure-function coupling (SC-FC coupling) in cognitive performance of WMH patients.
Methods: A total of 617 participants with WMH (mean age = 61 [SD = 8]; 287 females [46.
Magn Reson Med
September 2025
Department of Biomedical Engineering, University of California, Davis, Davis, California, USA.
Purpose: This study sought to determine the intrasession repeatability of the diffusion-weighted (DW) arterial spin labeling (ASL) sequence at different postlabel delays (PLDs).
Methods: We first performed numerical simulations to study the accuracy of the two-compartment water exchange rate (Kw) fitting model with added Gaussian noise for DW PLDs at 1500, 1800, and 2100 ms. Ten young, healthy participants then underwent a structural T scan and two intrasession in vivo DW ASL scans at each PLD on a 3T MRI.
MAGMA
September 2025
Department of Medical Imaging, (766), Radboud University Medical Center, Geert Grooteplein 10Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands.
Objective: To improve B field homogeneity in prostate MR imaging and spectroscopy using a custom-designed 16-channel external local shim coil array.
Methods: In vivo prostate imaging was performed in seven healthy volunteers (mean age: 40.7 years) without bowel preparation.