Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

People usually use the method of job analysis to understand the requirements of each job in terms of personnel characteristics, at the same time use the method of psychological measurement to understand the psychological characteristics of each person, and then put the personnel in the appropriate position by matching them with each other. With the development of the information age, massive and complex data are produced. How to accurately extract the effective data needed by the industry from the big data is a very arduous task. In reality, personnel data are influenced by many factors, and the time series formed by it is more accidental and random and often has multilevel and multiscale characteristics. How to use a certain algorithm or data processing technology to effectively dig out the rules contained in the personnel information data and explore the personnel placement scheme has become an important issue. In this paper, a multilayer variable neural network model for complex big data feature learning is established to optimize the staffing scheme. At the same time, the learning model is extended from vector space to tensor space. The parameters of neural network are inversed by high-order backpropagation algorithm facing tensor space. Compared with the traditional multilayer neural network calculation model based on tensor space, the multimodal neural network calculation model can learn the characteristics of complex data quickly and accurately and has obvious advantages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545588PMC
http://dx.doi.org/10.1155/2021/3250062DOI Listing

Publication Analysis

Top Keywords

neural network
20
big data
12
tensor space
12
data
9
personnel placement
8
placement scheme
8
multilayer variable
8
variable neural
8
complex data
8
personnel data
8

Similar Publications

Background And Purpose: Neuroinflammation is increasingly recognised to contribute to drug-resistant epilepsy. Activation of ATP-gated P2X7 receptors has emerged as an important upstream mechanism, and increased P2X7 receptor expression is present in the seizure focus in rodent models and patients. Pharmacological antagonists of P2X7 receptors attenuate seizures in rodents, but this has not been explored in human neural networks.

View Article and Find Full Text PDF

Automatic markerless estimation of infant posture and motion from ordinary videos carries great potential for movement studies "in the wild", facilitating understanding of motor development and massively increasing the chances of early diagnosis of disorders. There has been a rapid development of human pose estimation methods in computer vision, thanks to advances in deep learning and machine learning. However, these methods are trained on datasets that feature adults in different contexts.

View Article and Find Full Text PDF

Characterization of CNS Network Changes in Two Rodent Models of Chronic Pain.

Biol Pharm Bull

September 2025

Computational and Biological Learning Laboratory, University of Cambridge, Cambridge CB21PZ, United Kingdom.

Neuroimaging in rodents holds promise for advancing our understanding of the central nervous system (CNS) mechanisms that underlie chronic pain. Employing two established, but pathophysiologically distinct rodent models of chronic pain, the aim of the present study was to characterize chronic pain-related functional changes with resting-state functional magnetic resonance imaging (fMRI). In Experiment 1, we report findings from Lewis rats 3 weeks after Complete Freund's adjuvant (CFA) injection into the knee joint (n = 16) compared with the controls (n = 14).

View Article and Find Full Text PDF

The identification of deceased individuals is essential in forensic investigations, particularly when primary identification methods such as odontology, fingerprint, or DNA analysis are unavailable. In such cases, implanted medical devices may serve as supplementary identifiers for positive identification. This study proposes deep learning-based methods for the automatic detection of metallic implants in scout images acquired from computed tomography (CT).

View Article and Find Full Text PDF

Biophysically Constrained Dynamical Modelling of the Brain Using Multimodal Magnetic Resonance Imaging.

Brain Res Bull

September 2025

Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, CA; Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA.

We propose a Biophysically Restrained Analog Integrated Neural Network (BRAINN), an analog electrical network that models the dynamics of brain function. The network interconnects analog electrical circuits that simulate two tightly coupled brain processes: (1) propagation of an action potential, and (2) regional cerebral blood flow in response to the metabolic demands of signal propagation. These two processes are modeled by two branches of an electrical circuit comprising a resistor, a capacitor, and an inductor.

View Article and Find Full Text PDF