Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Paphiopedilum hirsutissimum is a member of Orchidaceae family that is famous for its ornamental value around the globe, it is vulnerable due to over-exploitation and was listed in Appendix I of the Convention on International Trade in Endangered Species of Wild Fauna and Flora, which prevents its trade across borders. Variation in flower color that gives rise to different flower patterns is a major trait contributing to its high ornamental value. However, the molecular mechanism underlying color formation in P. hirsutissimum still remains unexplored. In the present study, we exploited natural variation in petal and labellum color of Paphiopedilum plants and used comparative transcriptome analysis as well as pigment measurements to explore the important genes, metabolites and regulatory pathways linked to flower color variation in P. hirsutissimum.

Result: We observed that reduced anthocyanin and flavonoid contents along with slightly higher carotenoids are responsible for albino flower phenotype. Comparative transcriptome analysis identified 3287 differentially expressed genes (DEGs) among normal and albino labellum, and 3634 DEGs between normal and albino petals. Two genes encoding for flavanone 3-hydroxylase (F3H) and one gene encoding for chalcone synthase (CHS) were strongly downregulated in albino labellum and petals compared to normal flowers. As both F3H and CHS catalyze essentially important steps in anthocyanin biosynthesis pathway, downregulation of these genes is probably leading to albino flower phenotype via down-accumulation of anthocyanins. However, we observed the downregulation of major carotenoid biosynthesis genes including VDE, NCED and ABA2 which was inconsistent with the increased carotenoid accumulation in albino flowers, suggesting that carotenoid accumulation was probably controlled at post-transcriptional or translational level. In addition, we identified several key transcription factors (MYB73, MYB61, bHLH14, bHLH106, MADS-SOC1, AP2/ERF1, ERF26 and ERF87) that may regulate structural genes involved in flower color formation in P. hirsutissimum. Importantly, over-expression of some of these candidate TFs increased anthocyanin accumulation in tobacco leaves which provided important evidence for the role of these TFs in flower color formation probably via regulating key structural genes of the anthocyanin pathway.

Conclusion: The genes identified here could be potential targets for breeding P. hirsutissimum with different flower color patterns by manipulating the anthocyanin and carotenoid biosynthesis pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8549352PMC
http://dx.doi.org/10.1186/s12870-021-03256-3DOI Listing

Publication Analysis

Top Keywords

flower color
24
comparative transcriptome
12
transcriptome analysis
12
color formation
12
genes
9
flower
9
analysis identified
8
regulatory pathways
8
color
8
color variation
8

Similar Publications

Premise: Floral pigments primarily serve to attract pollinators through color display and also contribute to protection against environmental stress. Although pigment composition can be plastically altered under stress, its impact on pollinator color perception remains poorly understood. Moricandia arvensis (Brassicaceae) exhibits seasonal floral dimorphism, with lilac spring flowers and white summer flowers.

View Article and Find Full Text PDF

The associations between floral traits and pollinator groups in two Mediterranean mountainous plant communities in the Middle Atlas of Morocco.

BMC Ecol Evol

September 2025

Laboratory of Biotechnology, Conservation and Valorization of Natural Resources, Faculty of Sciences Dhar El Mahraz, University of Sidi Mohammed Ben Abdellah, P.O. Box 1796 (Atlas), Fez, 30000, Morocco.

Background: The relationships between floral traits and pollinators have been extensively studied over the last few decades. The concept of pollination syndrome suggests that plants pollinated by the same group of pollinators tend to develop similar combinations of floral traits. However, several studies have demonstrated the low predictability of these trait combinations and found high levels of pollination generalization within plant communities.

View Article and Find Full Text PDF

Identification of a carotenoid cleavage dioxygenase gene TeCCD4a regulating flower color and carotenoid content of marigold.

Gene

September 2025

National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:

Marigold (Tagetes erecta) serves as both an ornamental and economically significant species, owing to its diverse floral coloration and exceptionally high petal carotenoid content. Carotenoid cleavage dioxygenase (CCD), as the key enzymatic component, mediates the carotenoid degradation process. In this study, we cloned and functionally characterized a CCD4 gene to elucidate its regulatory function in petal color and carotenoid biosynthesis.

View Article and Find Full Text PDF

A comprehensive evaluation framework for climate effect on plant viewing activities.

Int J Biometeorol

September 2025

Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.

Plant viewing activities, which encompass the enjoyment of seasonal plant phenomena such as flowering and autumn leaf coloration, have become popular worldwide. Plant viewing activities are increasingly challenged by climate change, as key components like plant phenology and climate comfort are highly sensitive to global warming. However, few studies have explored the impact of climate change on viewing activities, particularly from an integrated, multi-factor perspective.

View Article and Find Full Text PDF

Premise: Flower color polymorphism (FCP) is thought to be driven by multiple selection agents. Although widely associated with visual attraction of multiple pollinators, FCP is also often correlated with abiotic factors. We explored the links between abiotic conditions, flowering phenology, and FCP in the winter-flowering geophyte Anemone coronaria L.

View Article and Find Full Text PDF