Landscape and climatic features drive genetic differentiation processes in a South American coastal plant.

BMC Ecol Evol

Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.

Published: October 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Historical and ecological processes shape patterns of genetic diversity in plant species. Colonization to new environments and geographical landscape features determine, amongst other factors, genetic diversity within- and differentiation between-populations. We analyse the genetic diversity and population structure of Calibrachoa heterophylla to infer the influence of abiotic landscape features on the level of gene flow in this coastal species of the South Atlantic Coastal Plain.

Results: The C. heterophylla populations located on early-deposited coastal plain regions show higher genetic diversity than those closer to the sea. The genetic differentiation follows a pattern of isolation-by-distance. Landscape features, such as water bodies and wind corridors, and geographical distances equally explain the observed genetic differentiation, whereas the precipitation seasonality exhibits a strong signal for isolation-by-environment in marginal populations. The estimated levels of gene flow suggest that marginal populations had restricted immigration rates enhancing differentiation.

Conclusions: Topographical features related to coastal plain deposition history influence population differentiation in C. heterophylla. Gene flow is mainly restricted to nearby populations and facilitated by wind fields, albeit without any apparent influence of large water bodies. Furthermore, differential rainfall regimes in marginal populations seem to promote genetic differentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547116PMC
http://dx.doi.org/10.1186/s12862-021-01916-4DOI Listing

Publication Analysis

Top Keywords

genetic differentiation
16
genetic diversity
16
landscape features
12
gene flow
12
marginal populations
12
genetic
8
coastal plain
8
water bodies
8
differentiation
6
features
5

Similar Publications

Drosophila seminal fluid proteins (SFPs) are often cited as an example of interlocus sexual conflict, wherein the proteins increase male fitness while decreasing female fitness, spurring recurring female counter adaptations and rapid molecular evolution. This model predicts that male-expressed genetic variation in the accessory gland, which produces seminal fluid, should generate counter-evolving genetic pathways in females, resulting in sexual coevolution. Using a trio of D.

View Article and Find Full Text PDF

Coalescent theory of the ψ directionality index.

G3 (Bethesda)

September 2025

Department of Biology, Stanford University, Stanford, CA 94305, USA.

The ψ directionality index was introduced by Peter & Slatkin (Evolution 67: 3274-3289, 2013) to infer the direction of range expansions from single-nucleotide polymorphism variation. Computed from the joint site frequency spectrum for two populations, ψ uses shared genetic variants to measure the difference in the amount of genetic drift experienced by the populations, associating excess drift with greater distance from the origin of the range expansion. Although ψ has been successfully applied in natural populations, its statistical properties have not been well understood.

View Article and Find Full Text PDF

Mosquitoes of the genus were collected in the Republic of Karelia, St. Petersburg, Leningrad Region, Novgorod Region and Pskov Region (Russia) in order to clarify their distribution and genetic and morphological diversity. ITS2 sequence analysis of s.

View Article and Find Full Text PDF

Unlabelled: The queen snapper ( Valenciennes in Cuvier & Valenciennes, 1828) is a deep-sea snapper whose commercial importance continues to increase in the US Caribbean. However, little is known about the biology and ecology of this species. In this study, the presence of a fine-scale population structure and genetic diversity of queen snapper from Puerto Rico was assessed through 16,188 SNPs derived from the Restriction site Associated DNA Sequencing (RAD-Seq) technique.

View Article and Find Full Text PDF

Understanding the relationship between macro- and microevolutionary processes and their delimitation remains a challenge. This review focuses on the role of chromosomal rearrangements in plant population differentiation and lineage diversification resulting in speciation, helping bridge the gap between macro- and microevolution through chromosomal evolution. We focus on angiosperms, a group that comprises the majority of extant plant species diversity and exhibits the largest chromosomal and genomic variations.

View Article and Find Full Text PDF