Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Organolead halide materials have shown promising optoelectronic properties that are suitable for light-emitting diodes (e.g., strong photoluminescence, narrow emission width, and high charge carrier mobility). However, the vast majority of them have no open porosity or open metal sites for host-guest interactions and are therefore not widely applicable in intrinsic fluorescent sensing of small molecules. Herein, we report a lead chloride-based metal-organic framework (MOF) with high porosity and stability and promising photoluminescent characteristics, performing as a sensitive, selective, and long-term stable fluorescence probe for NH. For the first time, a homemade dynamic real-time photoluminescence monitoring system was developed, which showed that our haloplumbate-based MOF has an immediate response and an extremely low limit of detection (12 ppm) toward NH. A variety of experimental characterization and theoretical calculations evidenced that the photoluminescence quenching was ascribed to the coordination between NH guests and exposed Pb centers in MOFs. Moreover, a portable on-site smart NH detector was designed based on this haloplumbate-MOF using a 3D printer, and the quantitative recovery experiment demonstrated the effective detection of NH in the range of 15-150 ppm. This study opens a new pathway to design organolead halide-based MOFs to perform on-site chemical sensing of small molecules and shows their high potential to monitor safety concentrations of NH in different industrial sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c15276 | DOI Listing |