Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The intrinsically fragile nature and leakage of the enzymes is a major obstacle for the commercial sensor of a continuous glucose monitoring system. Herein, a dual confinement effect is developed in a three dimensional (3D) nanocage-based zeolite imidazole framework (NC-ZIF), during which the high-loading enzymes can be well encapsulated with unusual bioactivity and stability. The shell of NC-ZIF sets the first confinement to prevent enzymes leakage, and the interior nanocage of NC-ZIF provides second confinement to immobilize enzymes and offers a spacious environment to maintain their conformational freedom. Moreover, the mesoporosity of the formed NC-ZIF can be precisely controlled, which can effectively enhance the mass transport. The resulted GOx/Hemin@NC-ZIF multi-enzymes system could not only realize rapid detection of glucose by colorimetric and electrochemical sensors with high catalytic cascade activity (with an 8.3-fold and 16-fold enhancements in comparison with free enzymes in solution, respectively), but also exhibit long-term stability, excellent selectivity and reusability. More importantly, the based wearable sweatband sensor measurement results showed a high correlation (>0.84, P < 0.001) with the levels measured by commercial glucometer. The reported dual confinement strategy opens up a window to immobilize enzymes with enhanced catalytic efficiency and stability for clinical-grade noninvasive continuous glucose sensor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2021.113695 | DOI Listing |