A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Dual confinement of high-loading enzymes within metal-organic frameworks for glucose sensor with enhanced cascade biocatalysis. | LitMetric

Dual confinement of high-loading enzymes within metal-organic frameworks for glucose sensor with enhanced cascade biocatalysis.

Biosens Bioelectron

Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China; Dalian National Laboratory for Clean Energy, Dalian, 116023, China. Electronic address:

Published: January 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The intrinsically fragile nature and leakage of the enzymes is a major obstacle for the commercial sensor of a continuous glucose monitoring system. Herein, a dual confinement effect is developed in a three dimensional (3D) nanocage-based zeolite imidazole framework (NC-ZIF), during which the high-loading enzymes can be well encapsulated with unusual bioactivity and stability. The shell of NC-ZIF sets the first confinement to prevent enzymes leakage, and the interior nanocage of NC-ZIF provides second confinement to immobilize enzymes and offers a spacious environment to maintain their conformational freedom. Moreover, the mesoporosity of the formed NC-ZIF can be precisely controlled, which can effectively enhance the mass transport. The resulted GOx/Hemin@NC-ZIF multi-enzymes system could not only realize rapid detection of glucose by colorimetric and electrochemical sensors with high catalytic cascade activity (with an 8.3-fold and 16-fold enhancements in comparison with free enzymes in solution, respectively), but also exhibit long-term stability, excellent selectivity and reusability. More importantly, the based wearable sweatband sensor measurement results showed a high correlation (>0.84, P < 0.001) with the levels measured by commercial glucometer. The reported dual confinement strategy opens up a window to immobilize enzymes with enhanced catalytic efficiency and stability for clinical-grade noninvasive continuous glucose sensor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2021.113695DOI Listing

Publication Analysis

Top Keywords

dual confinement
8
high-loading enzymes
8
enzymes
6
confinement high-loading
4
enzymes metal-organic
4
metal-organic frameworks
4
frameworks glucose sensor
4
glucose sensor enhanced
4
enhanced cascade
4
cascade biocatalysis
4

Similar Publications