Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A deficient epidermal barrier is a key feature of atopic dermatitis (AD) and comprises altered lipid and protein content and composition of the stratum corneum resulting in disturbed water balance. Clinically, eczematous lesions on dry skin and pruritus develop. Pruritic nodules occur in prurigo nodularis (PN), another chronic skin disease, which can be associated with atopy. We aimed at comparing the three clinical pictures, classic AD, atopic prurigo (AP), and non-atopic PN, to healthy controls regarding the epidermal barrier. We determined clinical parameters and performed biophysical measurements, histology/immunohistochemistry, electron microscopy, and molecular biological analysis. We found distinctively elevated clinical scores, reduced hydration and increased transepidermal water loss, epidermal hyperplasia and inflammation reduced filaggrin and increased loricrin and involucrin expression, as well as reduced intercellular lipid lamellae in all three disease groups. These findings show a severe disruption in epidermal barrier structure and function in all three disorders so that epidermal barrier impairment is now proven not only for AD but also for PN.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8533604PMC
http://dx.doi.org/10.3390/biology10101008DOI Listing

Publication Analysis

Top Keywords

epidermal barrier
20
classic atopic
8
atopic dermatitis
8
atopic prurigo
8
prurigo non-atopic
8
prurigo nodularis
8
barrier
5
epidermal
5
comparison epidermal
4
barrier integrity
4

Similar Publications

Skin aging serves as a critical indicator of systemic health decline. Despite Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) being a key therapeutic target, mechanistic understanding remains incomplete and potent, safe activators are lacking, hindering clinical progress. This study proposes the "Barrier-Skin-Systemic Aging Axis," demonstrating that epidermal barrier disruption accelerates aging via PPARγ suppression.

View Article and Find Full Text PDF

Targeting PAR-2 in atopic dermatitis: Preclinical evaluation of the novel inhibitor E6795.

Biochem Biophys Res Commun

September 2025

Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; A∗STAR Skin Research Labs (A∗SRL), Skin Research Institute of Singapore (SRIS), Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A∗STAR), 8A Biomedical Grove, IMMUNOS Buildi

Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by eczematous lesions, intense itching, and compromised skin barrier function. Despite the advent of new therapeutics, many individuals still face insufficient disease control, high costs, and relapse. Protease-activated receptor 2 (PAR-2), overexpressed in AD lesions, plays a central role in promoting inflammation, itch, and alterations in epidermal homeostasis.

View Article and Find Full Text PDF

Background/objective: Growing evidence highlights the role of physiological lipids, namely ceramides, cholesterol, and free fatty acids, in maintaining skin barrier function and preventing atopic dermatitis (AD). Current evidence on the efficacy, safety, and clinical relevance of stratum corneum (SC) lipid-based therapies to prevent AD and increase skin barrier integrity in high-risk infants was reviewed and synthesized.

Methods: Searches with key words lipid-based therapy, atopic dermatitis, infant, and prevention were conducted to identify papers using PubMed, Embase, Cochrane Library, and Scopus databases from January 2000 to June 2024.

View Article and Find Full Text PDF

Skin-Targeted AhR Activation by Microbial and Synthetic Indoles: Insights from the AhaRaCaT Reporter Cell Line.

Toxicol Lett

September 2025

Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic.

Disruption of the epidermal barrier contributes to skin disorders such as atopic dermatitis and psoriasis. The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, plays a key role in skin homeostasis and immune regulation. While traditionally associated with toxicity, AhR has emerged as a promising therapeutic target, particularly via tryptophan-derived indoles.

View Article and Find Full Text PDF

Objective: Skin lipids, such as ceramides (CERs), play an important role in maintaining the skin barrier. Although the benefits of CERs are well known, few studies have investigated the effects of other skin lipid components on the skin barrier. Therefore, this study compared the efficacy of several skin lipid components and their structural derivatives, including CERs, on the skin barrier.

View Article and Find Full Text PDF