Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Magnetoresistance of the correlated narrow-gap semiconductor FeSi was investigated by the radio frequency self-resonant spiral coil technique in magnetic fields up to 500 T, which is supplied by an electromagnetic flux compression megagauss generator. Semiconductor-to-metal transition accomplishes around 270 T observed as a sharp kink in the magnetoresistance, which implies the closing of the hybridization gap by the Zeeman shift of band edges. In the temperature-magnetic field phase diagram, the semiconductor-metal transition field is found to be almost independent of temperature, which is in contrast to a characteristic magnetic field associated with the hopping magnetoconduction in the in-gap localized states, exhibiting a notable temperature dependence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.127.156601 | DOI Listing |