98%
921
2 minutes
20
Hepatic fibrosis is characterized by excessive extracellular matrix deposition and ductular reactions, manifested as the expansion of hepatic progenitor cells (HPCs). We previously reported that the Y-box binding protein 1 (YB-1) in HPCs is involved in chronic liver injury. In this study, we constructed YB-1 Foxl1-Cre mice and investigated the role of YB-1 in HPC expansion in murine choline-deficient, ethionine-supplemented (CDE), and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) models. Liver injury and fibrosis were measured using hematoxylin and eosin (HE), Masson, and Sirius Red staining. HPC proliferation was detected using EdU and immunofluorescence (IF). Autophagic flow was measured by mCherry-GFP-LC3B staining and transmission electron microscopy (TEM). YB-1 expression was measured by immunofluorescence and western blotting. CUT & Tag analysis, chromatin immunoprecipitation, and RT-PCR were performed to explore the regulation of autophagy-related protein 7 (Atg7) transcription by YB-1. Our results indicated that liver injury was accompanied by high expression of YB-1, proliferative HPCs, and activated autophagy in the CDE and DDC models. YB-1 Cre mice displayed less liver injury and fibrosis than YB-1 Cre mice in the CDE and DDC models. YB-1 promoted proliferation and autophagy of HPCs in vitro and in vivo. Transforming growth factor-β (TGF-β) induced YB-1 nuclear translocation and facilitated the proliferation and autophagy of HPCs. YB-1 nuclear translocation promoted the transcription of Atg7, which is essential for TGF-β/YB-1 mediated HPCs expansion in vitro and in vivo. In summary, YB-1 nuclear translocation induced by TGF-β in HPCs promotes the proliferation and autophagy of HPCs and Atg7 participates in YB-1-mediated HPC-expansion and liver fibrosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbadis.2021.166290 | DOI Listing |
Liver Int
October 2025
GastroZentrum Hirslanden, Digestive Disease Center, Zürich, Switzerland.
Background And Aims: Cholangiopathies, including primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC), and post-COVID-19 cholangiopathy (PCC), involve chronic cholangiocyte injury, senescence, epithelial-stromal crosstalk, and progressive fibrosis. However, effective in vitro models to capture these interactions are limited. Here, we present a scaffold-free 3D multilineage spheroid model, composed of hepatocyte-like cells (HepG2), cholangiocytes (H69), and hepatic stellate cells (LX-2), designed to recapitulate early fibrogenic responses driven by senescent cholangiocytes.
View Article and Find Full Text PDFEndocrinol Diabetes Metab
September 2025
Liver Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
Introduction: Liver transplantation is associated with various metabolic disorders. Peri-transplant hyperglycemia is among the most frequent metabolic disorders among liver transplant recipients. Hyperglycemia following liver transplantation can increase the risk of post-transplant complications, potentially impacting both graft and recipient outcomes.
View Article and Find Full Text PDFRen Fail
December 2025
Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China.
This study aimed to develop a predictive model and construct a graded nomogram to estimate the risk of severe acute kidney injury (AKI) in patients without preexisting kidney dysfunction undergoing liver transplantation (LT). Patients undergoing LT between January 2022 and June 2023 were prospectively screened. Severe AKI was defined as Kidney Disease: Improving Global Outcomes stage 3.
View Article and Find Full Text PDFTrends Mol Med
September 2025
Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA. Electronic address:
Ferroptosis, a regulated cell death pathway driven by iron-catalyzed lipid peroxidation, has recently been implicated as a major cause of hepatic injury in metabolic dysfunction-associated fatty liver disease (MAFLD). This review highlights how the identification of hyperoxidized peroxiredoxin 3 (PRDX3) as a ferroptosis-specific marker has led to the discovery that ferroptosis contributes to liver injury in MAFLD, and summarizes other emerging evidence connecting ferroptosis to MAFLD pathogenesis. These new findings suggest that dietary fat composition and genetic variants such as PNPLA3(I148M) may affect the progression of MAFLD by regulating cellular sensitivity to ferroptosis.
View Article and Find Full Text PDFIntern Med
September 2025
Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Japan.