98%
921
2 minutes
20
Artificial intelligence (AI) has seen dramatic growth over the past decade, evolving from a niche super specialty computer application into a powerful tool which has revolutionized many areas of our professional and daily lives, and the potential of which seems to be still largely untapped. The field of medicine and medical imaging, as one of its various specialties, has gained considerable benefit from AI, including improved diagnostic accuracy and the possibility of predicting individual patient outcomes and options of more personalized treatment. It should be noted that this process can actively support the ongoing development of advanced, highly specific treatment strategies (e.g., target therapies for cancer patients) while enabling faster workflow and more efficient use of healthcare resources. The potential advantages of AI over conventional methods have made it attractive for physicians and other healthcare stakeholders, raising much interest in both the research and the industry communities. However, the fast development of AI has unveiled its potential for disrupting the work of healthcare professionals, spawning concerns among radiologists that, in the future, AI may outperform them, thus damaging their reputations or putting their jobs at risk. Furthermore, this development has raised relevant psychological, ethical, and medico-legal issues which need to be addressed for AI to be considered fully capable of patient management. The aim of this review is to provide a brief, hopefully exhaustive, overview of the state of the art of AI systems regarding medical imaging, with a special focus on how AI and the entire healthcare environment should be prepared to accomplish the goal of a more advanced human-centered world.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8505993 | PMC |
http://dx.doi.org/10.3389/fpsyg.2021.710982 | DOI Listing |
Mol Pharm
September 2025
Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
Tissue factor (TF) has emerged as a promising target for the diagnosis and treatment of hepatocellular carcinoma (HCC). However, there is limited data available on TF-related PET imaging for longitudinal monitoring of the pathophysiological changes during HCC formation. Herein, we aimed to explore the TF-expression feature and compare a novel TF-targeted PET probe with F-FDG through longitudinal imaging in diethylnitrosamine (DEN)-induced rat HCC.
View Article and Find Full Text PDFJCO Glob Oncol
May 2025
Department of Obstetrics and Gynaecology, Stanford University School of Medicine, Stanford, CA.
Purpose: Expanding high-risk human papillomavirus (HPV) vaccine coverage in resource-constrained settings is critical to bridging the cervical cancer gap and achieving the global action plan for elimination. Mobile health (mHealth) technology via short message services (SMS) has the potential to improve HPV vaccination uptake. The mHealth-HPVac study evaluated the effectiveness of mHealth interventions in increasing HPV vaccine uptake among mothers of unvaccinated girls aged 9-14 years in Lagos, Nigeria.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
November 2025
Departments of Neurology and Ophthalmology, NYU Grossman School of Medicine, NY; and.
Background And Objectives: While reductions in optical coherence tomography (OCT) pRNFL and ganglion cell-inner plexiform layer thicknesses have been shown to be associated with brain atrophy in adult-onset MS (AOMS) cohorts, the relationship between OCT and brain MRI measures is less established in pediatric-onset MS (POMS). Our aim was to examine the associations of OCT measures with volumetric MRI in a cohort of patients with POMS to determine whether OCT measures reflect CNS neurodegeneration in this patient population, as is seen in AOMS cohorts.
Methods: This was a cross-sectional study with retrospective ascertainment of patients with POMS evaluated at a single center with expertise in POMS and neuro-ophthalmology.
Emerg Top Life Sci
September 2025
Hurdle.bio / Chronomics Ltd., London, UK.
Artificial intelligence (AI) is transforming many fields, including healthcare and medicine. In biomarker discovery, AI algorithms have had a profound impact, thanks to their ability to derive insights from complex high-dimensional datasets and integrate multi-modal datatypes (such as omics, electronic health records, imaging or sensor and wearable data). However, despite the proliferation of AI-powered biomarkers, significant hurdles still remain in translating them to the clinic and driving adoption, including lack of population diversity, difficulties accessing harmonised data, costly and time-consuming clinical studies, evolving AI regulatory frameworks and absence of scalable diagnostic infrastructure.
View Article and Find Full Text PDFBlood Adv
September 2025
BC Cancer, Vancouver, British Columbia, Canada.
Classical Hodgkin Lymphoma (CHL) is characterized by a complex tumor microenvironment (TME) that supports disease progression. While immune cell recruitment by Hodgkin and Reed-Sternberg (HRS) cells is well-documented, the role of non-malignant B cells in relapse remains unclear. Using single-cell RNA sequencing (scRNA-seq) on paired diagnostic and relapsed CHL samples, we identified distinct shifts in B-cell populations, particularly an enrichment of naïve B cells and a reduction of memory B cells in early-relapse compared to late-relapse and newly diagnosed CHL.
View Article and Find Full Text PDF