A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Benchmarking sequencing methods and tools that facilitate the study of alternative polyadenylation. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Alternative cleavage and polyadenylation (APA), an RNA processing event, occurs in over 70% of human protein-coding genes. APA results in mRNA transcripts with distinct 3' ends. Most APA occurs within 3' UTRs, which harbor regulatory elements that can impact mRNA stability, translation, and localization.

Results: APA can be profiled using a number of established computational tools that infer polyadenylation sites from standard, short-read RNA-seq datasets. Here, we benchmarked a number of such tools-TAPAS, QAPA, DaPars2, GETUTR, and APATrap- against 3'-Seq, a specialized RNA-seq protocol that enriches for reads at the 3' ends of genes, and Iso-Seq, a Pacific Biosciences (PacBio) single-molecule full-length RNA-seq method in their ability to identify polyadenylation sites and quantify polyadenylation site usage. We demonstrate that 3'-Seq and Iso-Seq are able to identify and quantify the usage of polyadenylation sites more reliably than computational tools that take short-read RNA-seq as input. However, we find that running one such tool, QAPA, with a set of polyadenylation site annotations derived from small quantities of 3'-Seq or Iso-Seq can reliably quantify variation in APA across conditions, such asacross genotypes, as demonstrated by the successful mapping of alternative polyadenylation quantitative trait loci (apaQTL).

Conclusions: We envisage that our analyses will shed light on the advantages of studying APA with more specialized sequencing protocols, such as 3'-Seq or Iso-Seq, and the limitations of studying APA with short-read RNA-seq. We provide a computational pipeline to aid in the identification of polyadenylation sites and quantification of polyadenylation site usages using Iso-Seq data as input.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8518154PMC
http://dx.doi.org/10.1186/s13059-021-02502-zDOI Listing

Publication Analysis

Top Keywords

polyadenylation sites
16
short-read rna-seq
12
polyadenylation site
12
3'-seq iso-seq
12
polyadenylation
10
alternative polyadenylation
8
computational tools
8
studying apa
8
apa
7
rna-seq
5

Similar Publications