98%
921
2 minutes
20
This paper presents a design for temperature and pressure wireless sensors made of polymer-derived ceramics for extreme environment applications. The wireless sensors were designed and fabricated with conductive carbon paste on an 18.24 mm diameter with 2.4 mm thickness polymer-derived ceramic silicon carbon nitride (PDC-SiCN) disk substrate for the temperature sensor and an 18 × 18 × 2.6 mm silicon carbide ceramic substrate for the pressure sensor. In the experiment, a horn antenna interrogated the patch antenna sensor on a standard muffle furnace and a Shimadzu AGS-J universal test machine (UTM) at a wireless sensing distance of 0.5 m. The monotonic relationship between the dielectric constant of the ceramic substrate and ambient temperature is the fundamental principle for wireless temperature sensing. The temperature measurement has been demonstrated from 600 °C to 900 °C. The result closely matches the thermocouple measurement with a mean absolute difference of 2.63 °C. For the pressure sensor, the patch antenna was designed to resonate at 4.7 GHz at the no-loading case. The sensing mechanism is based on the piezo-dielectric property of the silicon carbon nitride. The developed temperature/pressure sensing system provides a feasible solution for wireless measurement for extreme environment applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512561 | PMC |
http://dx.doi.org/10.3390/s21196648 | DOI Listing |
Sci Adv
September 2025
State Key Laboratory for Manufacturing System Engineering, State Industry-Education Integration Center for Medical Innovations, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Shaanxi Innovation Center for Special Sensing and Testing Technology in Extreme En
Continuous monitoring of cardiovascular vital signs can reduce the incidence and mortality of cardiovascular diseases, yet cannot be implemented by current technologies because of device bulkiness and rigidity. Here, we report self-adhesive and skin-conformal ultrasonic transducer arrays that enable wearable monitoring of multiple hemodynamic parameters without interfering with daily activities. A skin-adaptive focused ultrasound method with rational array design is proposed to implement measurement under wide ranges of skin curvatures and depths with improved sensing performances.
View Article and Find Full Text PDFSoft Robot
September 2025
The School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, Australia.
Soft robotic systems are promising for diverse space applications due to their embedded compliance, promising locomotion methods, and efficient use of mass and volume. Space environments are harsher and more varied than those on Earth; extreme temperature, pressure, and radiation may impact the performance and robustness of soft robots. Cryogenic temperatures on celestial bodies such as the Moon or Europa pose significant challenges to the flexibility and actuation performance of conventional soft systems.
View Article and Find Full Text PDFFront Immunol
August 2025
Azienda Sanitaria Territoriale Fermo, Fermo, Italy.
Int J Nanomedicine
September 2025
The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China.
Ulcerative colitis (UC) is a chronic inflammatory bowel disease, the incidence of which continues to rise globally, and existing therapeutic options are limited by low drug bioavailability and systemic side effects. In this study, we systematically investigated the challenges of the special gastrointestinal environment of UC patients for oral drug delivery, such as extreme pH, degradation by digestive enzymes, metabolism of intestinal flora and obstruction of the intestinal mucosal barrier, and summarized the potential of plant-derived Exosome-like Nanovesicles (PELNs) as a novel delivery system. PELNs are produced by plant cells and mainly consist of proteins, RNA, lipids and plant active molecules.
View Article and Find Full Text PDFAlpine streams represent some of the most challenging yet ecologically valuable freshwater environments to study, due to their remoteness, fast flows and extreme climatic conditions. Traditional fish survey methods are often impractical or invasive in these habitats. This study presents a lightweight, low-cost, T-shaped remote underwater video (RUV) system optimized for fish monitoring in small, high-altitude streams of the European Alps.
View Article and Find Full Text PDF