98%
921
2 minutes
20
The methodological development in the mapping of the brain structural connectome from diffusion-weighted magnetic resonance imaging (DW-MRI) has raised many hopes in the neuroscientific community. Indeed, the knowledge of the connections between different brain regions is fundamental to study brain anatomy and function. The reliability of the structural connectome is therefore of paramount importance. In the search for accuracy, researchers have given particular attention to linking white matter tractography methods - used for estimating the connectome - with information about the microstructure of the nervous tissue. The creation and validation of methods in this context were hampered by a lack of practical numerical phantoms. To achieve this, we created a numerical phantom that mimics complex anatomical fibre pathway trajectories while also accounting for microstructural features such as axonal diameter distribution, myelin presence, and variable packing densities. The substrate has a micrometric resolution and an unprecedented size of 1 cubic millimetre to mimic an image acquisition matrix of voxels. DW-MRI images were obtained from Monte Carlo simulations of spin dynamics to enable the validation of quantitative tractography. The phantom is composed of 12,196 synthetic tubular fibres with diameters ranging from 1.4 µm to 4.2 µm, interconnecting sixteen regions of interest. The simulated images capture the microscopic properties of the tissue (e.g. fibre diameter, water diffusing within and around fibres, free water compartment), while also having desirable macroscopic properties resembling the anatomy, such as the smoothness of the fibre trajectories. While previous phantoms were used to validate either tractography or microstructure, this phantom can enable a better assessment of the connectome estimation's reliability on the one side, and its adherence to the actual microstructure of the nervous tissue on the other.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8487002 | PMC |
http://dx.doi.org/10.1016/j.dib.2021.107429 | DOI Listing |
Br J Neurosurg
September 2025
Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
Introduction: Radiosurgery targeting the thalamus has long been used to treat refractory pain, with medial thalamotomy as a key approach. Traditionally, targeting relied on indirect methods based on anatomical atlases, which do not account for individual variations in brain connectivity. Recent advances in connectomic-guided stereotactic radiosurgery have improved precision in the treatment of movement disorders, but their application to pain management remains underexplored.
View Article and Find Full Text PDFJ Neurosci Methods
September 2025
European Laboratory for Non-linear Spectroscopy, via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; National Institute of Optics -National Research Council (CNR-INO), 50125 Sesto Fiorentino, Italy. Electronic address:
Background: Tissue clearing techniques combined with light-sheet fluorescence microscopy (LSFM) enable high-resolution 3D imaging of biological structures without physical sectioning. While widely used in neuroscience to determine brain architecture and connectomics, their application for spinal cord mapping remains more limited, posing challenges for studying demyelinating diseases like multiple sclerosis. Myelin visualization in cleared tissues is particularly difficult due to the lipid-removal nature of most clearing protocols, and alternative immunolabeling approaches failed to reach satisfying results.
View Article and Find Full Text PDFNeuroscience
September 2025
Department of Psychology & Health Studies, University of Saskatchewan, Saskatoon, Canada. Electronic address:
Attentional processes are crucial to ensure successful reading, and theories of dyslexia propose that dysfunctional attention networks may contribute to the observed reading deficits. The goals of this study were to localize a region of the frontal-eye-field (FEF) involved in both reading and attention and examine its connectivity with regions in the reading and attention networks, given the known role of the FEF in attentional processes and theorized role in reading. In Experiment 1, we revisited the results of our previous hybrid reading and attention study.
View Article and Find Full Text PDFComput Med Imaging Graph
August 2025
Institute of Advanced Technology, Zhejiang University of Technology, Hangzhou, China. Electronic address:
The segmentation of cranial nerves (CNs) tract provides a valuable quantitative tool for the analysis of the morphology and trajectory of individual CNs. Multimodal CN segmentation networks, e.g.
View Article and Find Full Text PDFbioRxiv
August 2025
Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal.
Nutrient state shapes not only what animals eat, but how they eat it. In , protein deprivation prolongs protein-specific feeding bursts, yet the motor mechanism underlying this change remains unknown. Using EM connectomics, we identified a feed-forward pathway from protein-sensitive gustatory receptor neurons to swallowing motor neurons.
View Article and Find Full Text PDF