Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Van Gogh-like 2 (Vangl2) is a mammalian homolog of Drosophila core planar cell polarity (PCP) protein Vang/Strabismus, which organizes asymmetric cell axes for developmental proliferation, fate determination, and polarized movements in multiple tissues, including neurons. Although the PCP pathway has an essential role for dendrite and dendritic spine formation, the molecular mechanism remains to be clarified. To investigate the mechanism of Vangl2-related neuronal development, we screened for proteins that interact with the Vangl2 cytosolic N-terminus from postnatal day 9 mouse brains using a yeast two-hybrid system. From 61 genes, we identified adaptor-related protein complex 2, mu 1 subunit (Ap2m1) as the Vangl2 N-terminal binding protein. Intriguingly, however, the pull-down assay demonstrated that Vangl2 interacted with Ap2m1 not only at its N-terminus but also at the C-terminal Prickle binding domain. Furthermore, we verified that the downregulation of Ap2m1 in the developing cortical neurons reduced the dendritic branching similar to what occurs in a knockdown of Vangl2. From these results, we suggest that the membrane internalization regulated by the PCP pathway is required for the developmental morphological change in neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gtc.12899DOI Listing

Publication Analysis

Top Keywords

planar cell
8
cell polarity
8
dendritic branching
8
cortical neurons
8
pcp pathway
8
vangl2
6
protein
5
polarity protein
4
protein vangl2
4
vangl2 interacting
4

Similar Publications

The stress distribution in Li metal strongly affects the interfacial Li-ion diffusion, thereby influencing the morphology of plated Li and the performance of the battery. Here, we report a mechano-electrochemical coupling strategy that utilizes an arched structured carbon aerogel to achieve stable Li-plating/stripping electrochemistry. The arch-structured carbon aerogel can actively regulate stress distributions in response to the compressive stresses induced by Li deposition, generating the transition of stress from compressive on the convex surface to tensile on the concave surface, which can effectively promote the Li-migration kinetics and thus suppress the non-uniform deposition of Li.

View Article and Find Full Text PDF

Morphogenetic information arises from a combination of genetically encoded cellular properties and emergent cellular behaviors. The spatio-temporal implementation of this information is critical to ensure robust, reproducible tissue shapes, yet the principles underlying its organization remain unknown. We investigated this principle using the mouse auditory epithelium, the organ of Corti (OC).

View Article and Find Full Text PDF

Strain-induced instabilities of graphene under biaxial stress.

J Chem Phys

September 2025

Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.

The mechanical properties of graphene are investigated using classical molecular dynamics simulations as a function of temperature T and external stress τ. The elastic response is characterized by calculating elastic constants via three complementary methods: (i) numerical derivatives of stress-strain curves, (ii) analysis of cell fluctuation correlations, and (iii) phonon dispersion analysis. Simulations were performed with two interatomic models: an empirical potential and a tight-binding electronic Hamiltonian.

View Article and Find Full Text PDF

Aim: Prickle planar cell polarity (PCP) protein 2 (Prickle2) encodes a homologue of Drosophila prickle and is involved in the non-canonical Wnt/PCP signalling pathway. However, its exact role in dentinogenesis remains unclear. Dentinogenesis, a key process in tooth morphogenesis, involves the patterned arrangement of odontoblasts and the formation of dentine matrix along the pulp cavity.

View Article and Find Full Text PDF

Mammalian motile cilia: Structure, formation, organization, and function.

Semin Cell Dev Biol

September 2025

Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China. Electronic address:

Cilia are membrane-covered hair-like organelles built on specialized centrioles and conserved throughout eukaryotic evolution. They are either motile or immotile, serving respectively as versatile signaling antennae or elegant beating nanomachines. Accordingly, their dysfunctions cause a wide variety of developmental and degenerative disorders, which in human are syndromes termed ciliopathies.

View Article and Find Full Text PDF