A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Deep learning wavefront sensing for fine phasing of segmented mirrors. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Segmented primary mirror provides many crucial important advantages for the construction of extra-large space telescopes. The imaging quality of this class of telescope is susceptible to phasing error between primary mirror segments. Deep learning has been widely applied in the field of optical imaging and wavefront sensing, including phasing segmented mirrors. Compared to other image-based phasing techniques, such as phase retrieval and phase diversity, deep learning has the advantage of high efficiency and free of stagnation problem. However, at present deep learning methods are mainly applied to coarse phasing and used to estimate piston error between segments. In this paper, deep Bi-GRU neural work is introduced to fine phasing of segmented mirrors, which not only has a much simpler structure than CNN or LSTM network, but also can effectively solve the gradient vanishing problem in training due to long term dependencies. By incorporating phasing errors (piston and tip-tilt errors), some low-order aberrations as well as other practical considerations, Bi-GRU neural work can effectively be used for fine phasing of segmented mirrors. Simulations and real experiments are used to demonstrate the accuracy and effectiveness of the proposed methods.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.434024DOI Listing

Publication Analysis

Top Keywords

deep learning
16
phasing segmented
16
segmented mirrors
16
fine phasing
12
wavefront sensing
8
phasing
8
primary mirror
8
bi-gru neural
8
neural work
8
deep
5

Similar Publications