Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Segmented primary mirror provides many crucial important advantages for the construction of extra-large space telescopes. The imaging quality of this class of telescope is susceptible to phasing error between primary mirror segments. Deep learning has been widely applied in the field of optical imaging and wavefront sensing, including phasing segmented mirrors. Compared to other image-based phasing techniques, such as phase retrieval and phase diversity, deep learning has the advantage of high efficiency and free of stagnation problem. However, at present deep learning methods are mainly applied to coarse phasing and used to estimate piston error between segments. In this paper, deep Bi-GRU neural work is introduced to fine phasing of segmented mirrors, which not only has a much simpler structure than CNN or LSTM network, but also can effectively solve the gradient vanishing problem in training due to long term dependencies. By incorporating phasing errors (piston and tip-tilt errors), some low-order aberrations as well as other practical considerations, Bi-GRU neural work can effectively be used for fine phasing of segmented mirrors. Simulations and real experiments are used to demonstrate the accuracy and effectiveness of the proposed methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.434024 | DOI Listing |