Microbial investigations of new hydrogel-biochar composites as soil amendments for simultaneous nitrogen-use improvement and heavy metal immobilization.

J Hazard Mater

Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China. Electronic address:

Published: February 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Agricultural sustainability is challenging because of increasingly serious and co-existing issues, e.g., poor nitrogen-fertilizer use and heavy metal pollution. Herein, we introduced a new poly(acrylic acid)-grafted chitosan and biochar composite (PAA/CTS/BC) for soil amendment, and provided a first microbial insight into how PAA/CTS/BC amendment simultaneously improved nitrogen cycling and immobilized heavy metals. Our results suggest that the PAA/CTS/BC amendment significantly promoted soil ammonium retention, and reduced nitrate accumulation, nitrous oxide emission and ammonia volatilization during the rice cultivation. The availability of various heavy metals (Fe, Mn, Cu, Zn, Ni, Pb, Cr, and As) markedly decreased in the PAA/CTS/BC amended soil, thereby reducing their accumulation in rice root. The PAA/CTS/BC amendment significantly altered the structure and function of soil microbial communities. Importantly, the co-occurrence networks of microbial communities became more complex and function-specific after PAA/CTS/BC addition. For example, the keystone species related to organic matter degradation, denitrification, and plant resistance to pathogen or stresses were enriched within the network. In addition to direct adsorption, the effects of PAA/CTS/BC on shaping microbial communities played dominant roles in the soil amendment. Our findings provide a promising strategy of simultaneous nitrogen-use improvement and heavy metal immobilization for achieving crop production improvement, pollution control, and climate change mitigation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.127154DOI Listing

Publication Analysis

Top Keywords

heavy metal
12
paa/cts/bc amendment
12
microbial communities
12
simultaneous nitrogen-use
8
nitrogen-use improvement
8
improvement heavy
8
metal immobilization
8
soil amendment
8
heavy metals
8
paa/cts/bc
7

Similar Publications

The pathway of toxic heavy metals in the Caspian sea sturgeons.

Ecotoxicology

September 2025

Department of Fisheries, Faculty of Natural Resources, University College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.

View Article and Find Full Text PDF

Cadmium (Cd) pollution in rice agroecosystems has become a pressing worldwide environmental challenge. Straw return leads to Cd re-entering the soil, yet the impact of straw removal (SR) on Cd mobility and bioavailability within this system remains unclear. We implemented a four-season field study to evaluate how different SR intensities (NSR: no rice straw was removed; HSR: half of the rice straw was removed; TSR: all the rice straw was removed) influence Cd availability in this system.

View Article and Find Full Text PDF

Evaluation of Mercury Contamination in Chickens (Gallus gallus) and Soils in an Artisanal Gold Mining Area in San Martin De Loba, Bolivar, Colombia.

Bull Environ Contam Toxicol

September 2025

Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Zaragocilla Campus, Cartagena, 130015, Colombia.

The use of mercury (Hg) in artisanal gold mining in San Martin de Loba (SML), Bolivar, Colombia, poses significant environmental and health risks. This study aimed to evaluate total mercury (T-Hg) concentrations in chicken feathers (Gallus gallus) and soils from SML, and compare them with those obtained in a reference site without mining activity (Arjona). A total of 40 chickens and 30 soil samples were taken in SML, along with 31 chickens and 21 soil samples in Arjona.

View Article and Find Full Text PDF

Wounds with extensive tissue damage are highly susceptible for microbial infections delaying the process of wound healing. Currently, biomaterials with therapeutic molecules emerged as key players in wound repairing. This work developed a novel collagen-based hydrogel loaded with allicin and silver nanoparticles.

View Article and Find Full Text PDF

Hookah use is a growing global health concern, particularly among young adults, with significant misconceptions about its safety. This study aimed to investigate the prevalence of hookah use and its association with knowledge of harmful substances and future susceptibility among university students in Iran. A cross-sectional study was conducted among 561 undergraduate students from Golestan University of Medical Sciences in Iran between April and June 2024.

View Article and Find Full Text PDF