Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Root growth and architecture are markedly influenced by both developmental and environmental cues. Sugars integrate different stimuli and are essential building blocks and signaling molecules for modulating the root system. Members from the SUGAR WILL EVENTUALLY BE EXPORTED TRANSPORTER (SWEET) family facilitate the transport of different sugars over cellular membranes and steer both inter and intracellular distribution of sugars. SWEET17 represents a fructose-specific sugar porter localized to the vacuolar membrane, the tonoplast. Here, we analyzed how SWEET17-dependent fructose released from vacuoles affects root growth during drought stress in Arabidopsis (Arabidopsis thaliana). We found that the SWEET17 gene was predominantly expressed in the root vasculature and in meristematic cells of the root tip. SWEET17 expression appeared markedly induced during lateral root (LR) outgrowth and under drought. Moreover, fructose repressed primary root growth but induced density and length of first order LRs. Consistently, sweet17 knock-out mutants exhibited reduced LR growth and a diminished expression of LR-development-related transcription factors during drought stress, resulting in impaired drought tolerance of sweet17 mutants. We discuss how SWEET17 activity integrates drought-induced cellular responses into fructose signaling necessary for modulation of the root system and maximal drought tolerance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8644896PMC
http://dx.doi.org/10.1093/plphys/kiab436DOI Listing

Publication Analysis

Top Keywords

drought tolerance
12
root growth
12
root
9
root system
8
drought stress
8
sweet17
7
drought
6
vacuolar fructose
4
fructose transporter
4
transporter sweet17
4

Similar Publications

Nonexpressor of pathogenesis-related genes 1 (NPR1) is a master regulator of salicylic acid (SA)- facilitated plant hormone signaling and plays a crucial role in plant defense through the activation of systemic acquired resistance (SAR). Although like genes are associated with stress responses in a variety of plant species, no thorough genome-wide investigation of these genes has been undertaken in pearl millet (). This study discovered seven -like genes on four pearl millet chromosomes (Chr1, Chr2, Chr4, and Chr6), which exhibit close affinity to NPRs from other plants and have common gene structures, conserved motifs, and domains.

View Article and Find Full Text PDF

Long non-coding RNAs: Silent contributors to plant survival under abiotic stress.

Biochem Biophys Res Commun

September 2025

Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, H.P., 173234, India. Electronic address:

Abiotic challenges have a major impact on plant growth and development. Recent research has highlighted the role of long non-coding RNAs in response to these environmental stressors. Long non-coding RNAs are transcripts that are usually longer than 200 nucleotides with no potential for coding proteins.

View Article and Find Full Text PDF

Identification of RAV transcription factors (B3-domain-containing) and functional analysis of OsRAV2 in rice blast and drought stress.

J Plant Physiol

September 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China. Electronic address:

RAV transcription factors play roles in a variety of diverse biological processes. However, their role in rice's response to drought and blast stress remains largely unexplored. In this study, we performed a genome-wide characterization and identification of rice RAV transcription factor family genes.

View Article and Find Full Text PDF

Integrated metagenomic, culture-based, and whole genome sequencing analyses of antimicrobial resistance in wastewater and drinking water treatment plants in Barcelona, Spain.

Int J Hyg Environ Health

September 2025

ISGlobal, Barcelona, Spain; Faculty of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain. Electronic address:

The misuse and overuse of antimicrobials drive the emergence of antimicrobial resistance (AMR), a critical global health concern. While wastewater treatment plants (WWTPs) are essential for removing microorganisms and contaminants, they also serve as hotspots for antibiotic-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs), facilitating their persistence and dissemination. This study investigated AMR in two WWTPs and one drinking water treatment plant (DWTP) in the Baix Llobregat area of Barcelona, Spain.

View Article and Find Full Text PDF