98%
921
2 minutes
20
Caffeine is one of the most widely used psychostimulants in the world and possesses central excitative, anti-depressive, and neuroprotective properties. However, excessive ingestion or abuse of caffeine can lead to intoxication. Many toxic effects are attributed to oxidative damage, and nuclear factor erythroid 2-related factor 2 (Nrf2) is a critical intracellular regulator of the oxidative stress response. Here, we investigated the neurotoxicity of caffeine in rat pheochromocytoma PC12 cells and zebrafish larvae. It was found that caffeine inhibited the viability of PC12 cells in a dose- and time-dependent manner. Furthermore, it induced PC12 cell apoptosis and elevated reactive oxygen species (ROS) production. Quantitative polymerase chain reaction (qPCR) and western blotting revealed that caffeine also inhibited the expression levels of Nrf2 mRNA and protein and its target genes (e.g., NADPH quinone oxidoreductase 1 [NQO1]). Furthermore, Nrf2 silencing attenuated the toxic effects of caffeine. In addition, zebrafish larvae were treated with different doses of caffeine. Behavioral experiments showed that a low dose of caffeine (0.05 to 0.3 mM) increased the average distance of movement and promoted excitation. Survivorship curves showed that caffeine (0.2 to 1.5 mM) caused lethality. Finally, qPCR revealed that a higher dose of caffeine inhibited mRNA levels in the Nrf2 pathway. Based on these results, this study identified for the first time that overuse of caffeine can induce neurotoxicity by inhibiting the Nrf2 pathway. These results will provide a new perspective for studies on caffeine toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jat.4244 | DOI Listing |
Nutr Rev
September 2025
Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
Pomegranate (Punica granatum L) is a rich source of bioactive compounds, including punicalagin, ellagic acid, anthocyanins, and urolithins, which contribute to its broad pharmacological potential. This review summarizes evidence from in vitro and in vivo experiments, as well as clinical studies, highlighting pomegranate's therapeutic effects in inflammation, metabolic disorders, cancer, cardiovascular disease, neurodegeneration, microbial infections, and skin conditions. Mechanistic insights show modulation of pathways such as nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), alpha serine/threonine-protein kinase (AKT1), and nuclear factor erythroid 2-related factor 2 (Nrf2).
View Article and Find Full Text PDFGen Physiol Biophys
September 2025
Department of Neurology, Hubei Third People's Hospital of Jianghan University, Wuhan, China.
In this study, we investigated the therapeutic potential of calycosin (from Astragalus) in Alzheimer's disease (AD), focusing on ferroptosis modulation. APP/PS1 mice received 40 mg/kg calycosin for 3 months. Cognitive function was assessed via Morris water maze test.
View Article and Find Full Text PDFJ Cardiovasc Pharmacol
September 2025
Department of Cardiovascular Medicine, Liyuan Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430060, China.
Nuclear factor erythrocyte 2-associated factor 2 (Nrf2) is an important transcriptional regulator that plays a protective role in myocardial remodeling. Omaveloxolone (Omav) acts as an activator of Nrf2 and plays a protective role by decreasing oxidative stress and inflammation. The purpose of this study was to explore the role of Omav in myocardial remodeling and investigate the potential mechanism involved.
View Article and Find Full Text PDFHistol Histopathol
September 2025
Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
Brazilin, a natural homoisoflavonoid, is the primary bioactive ingredient derived from the bark and heartwood of L. It has been proven to exhibit multiple biological activities and therapeutic potential in chronic degenerative diseases, fibrotic disorders, inflammatory diseases, and cancers. However, whether it is involved in regulating the pathological process of acute kidney injury (AKI) is not fully understood.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
September 2025
Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
Breast cancer is one of the most lethal cancers in women worldwide. Tamoxifen (TAM), a nonsteroidal antiestrogen, is a highly successful treatment for breast cancer. However, developed resistance to TAM can substantially impair chemotherapy efficacy, resulting in poor prognosis and cancer recurrence.
View Article and Find Full Text PDF