98%
921
2 minutes
20
This study aimed to develop a physiologically based pharmacokinetic (PBPK) model of tegoprazan and to predict the drug-drug interaction (DDI) potential between tegoprazan and cytochrome P450 (CYP) 3A4 perpetrators. The PBPK model of tegoprazan was developed using SimCYP Simulator and verified by comparing the model-predicted pharmacokinetics (PKs) of tegoprazan with the observed data from phase 1 clinical studies, including DDI studies. DDIs between tegoprazan and three CYP3A4 perpetrators were predicted by simulating the difference in tegoprazan exposure with and without perpetrators, after multiple dosing for a clinically used dose range. The final PBPK model adequately predicted the biphasic distribution profiles of tegoprazan and DDI between tegoprazan and clarithromycin. All ratios of the predicted-to-observed PK parameters were between 0.5 and 2.0. In DDI simulation, systemic exposure to tegoprazan was expected to increase about threefold when co-administered with the maximum recommended dose of clarithromycin or ketoconazole. Meanwhile, tegoprazan exposure was expected to decrease to ~30% when rifampicin was co-administered. Based on the simulation by the PBPK model, it is suggested that the DDI potential be considered when tegoprazan is used with CYP3A4 perpetrator, as the acid suppression effect of tegoprazan is known to be associated with systemic exposure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8464955 | PMC |
http://dx.doi.org/10.3390/pharmaceutics13091489 | DOI Listing |
J Clin Pharmacol
September 2025
Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
Topiramate is increasingly used in the treatment of epilepsy during pregnancy. However, its plasma concentration evidently decreases during pregnancy, which may reduce its efficacy. This study aimed to develop a physiologically based pharmacokinetic (PBPK) model of topiramate to simulate maternal and fetal pharmacokinetic changes across different trimesters and to propose dose adjustments.
View Article and Find Full Text PDFAAPS J
September 2025
Clinical Pharmacology Laboratory, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, Maryland, 20892, USA.
Antibody-drug conjugates (ADCs) represent a rapidly expanding class of therapeutics, uniquely combining the specificity of monoclonal antibodies with the potency of cytotoxic small-molecule payloads. Due to their inherent structural complexity and heterogeneous composition, accurate characterization and quantification of ADCs pose significant bioanalytical challenges. This review discusses recent advancements in bioanalytical methodologies, including ligand binding assays (LBAs), liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based approaches, and emerging hybrid LBA-LC-MS/MS platforms.
View Article and Find Full Text PDFJ Pharmacokinet Pharmacodyn
September 2025
Centre for Applied Pharmacokinetic Research (CAPKR), University of Manchester, Manchester, UK.
Concentration-dependent binding to red blood cells is a characteristic of several drugs, complicating the understanding of how pathophysiological factors influence drug behavior. This study utilized user-friendly, physiologically-based pharmacokinetic (PBPK) models to compare concentration-dependent and independent blood-to-plasma drug concentration ratios (B/P), using tacrolimus as a case study. Two models were developed and validated for tacrolimus using clinical data from healthy volunteers; Model 1 accounted for saturable blood binding, and Model 2 used a constant B/P level.
View Article and Find Full Text PDFAAPS J
September 2025
Pharmaceutical Science, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut, 06340, USA.
A virtual bioequivalence (VBE) approach utilizing physiologically based pharmacokinetic (PBPK) modeling presents a compelling alternative for pharmaceutical industries. This method can significantly reduce the time and cost associated with clinical bioequivalence (BE) trials while minimizing the risk of detecting a type II error (a false negative), as well as a type I error (a false positive). Additionally, it aligns with ethical considerations by obviating the need to expose healthy volunteers to investigational drugs.
View Article and Find Full Text PDFAAPS J
September 2025
Certara Predictive Technologies, Certara, Sheffield, UK.
In vitro permeation testing (IVPT) is commonly used to assess dermal drug delivery, yet its utility can be challenged by high variability and the need for large sample sizes to achieve sufficient statistical power. Dermal physiologically based pharmacokinetic (PBPK) models provide a mechanistic approach to better interpret IVPT results and to extrapolate in vitro to in vivo. In the present work, a dermal PBPK model for caffeine was developed using a bottom-up approach with minimal parameter optimization.
View Article and Find Full Text PDF