98%
921
2 minutes
20
Current evidence elucidates that long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 () could regulate genetic expression and play a crucial role in both the diagnosis and prognosis of prostate cancer. Single-nucleotide polymorphisms (SNPs) of could alter the oncogenesis in various cancers. However, the associations between SNPs and prostate cancer have barely been investigated to date. This study included 579 patients with prostate cancer who received robotic-assisted radical prostatectomy at Taichung Veterans General Hospital from 2012 to 2017. Three SNPs of were analyzed to identify the impacts of SNPs on the clinicopathologic features in Taiwanese prostate cancer. Our results show that patients with a polymorphic G allele at rs619586 had a significantly higher risk of being in an advanced Gleason grade group (AOR: 1.764; 95% CI: 1.011-3.077; = 0.046). Moreover, individuals with at least one polymorphic A allele at rs1194338 in the PSA >10 ng/mL group were positively associated with node-positive prostate cancer. In conclusion, SNPs are significantly associated with the susceptibility to both advanced Gleason grade and nodal metastasis in prostate cancer. The presence of SNPs rs619586 and rs1194338 seems to enhance oncogenesis in prostate cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468695 | PMC |
http://dx.doi.org/10.3390/diagnostics11091692 | DOI Listing |
Rev Med Liege
September 2025
Service d'Oncologie Médicale, CHU Liège, Belgique.
This review aims to describe the role of poly-ADP-ribose polymerase inhibitors (PARPi) in the treatment of metastatic castration-resistant prostate cancer (mCRPC), an aggressive and lethal form of the disease. The introduction of PARPi has led to improved prognosis, particularly in patients with at least one somatic or germline mutation in DNA damage repair genes such as BRCA1 or BRCA2. Several recent studies have shown that PARPi, used alone or in combination with abiraterone or enzalutamide, improve progression-free survival and overall survival in patients with mCRPC.
View Article and Find Full Text PDFClin Transl Oncol
September 2025
Department of Radiation Oncology, Vithas La Milagrosa University Hospital, Madrid, 28010, Spain.
This narrative review analyzes current evidence comparing single-session and two-session approaches in Stereotactic Body Radiation Therapy (SBRT) and high-dose-rate (HDR) brachytherapy for localized prostate cancer. These ultra-hypofractionated strategies deliver high-precision ablative doses while minimizing exposure to normal tissues. SBRT regimens with fewer than five fractions show tumor control comparable to conventional treatments, offering reduced treatment burden and increased convenience.
View Article and Find Full Text PDFWorld J Urol
September 2025
Bichat Claude Bernard Hospital, Public Assistance of Paris Hospitals, Paris, France.
Purpose: Screening and diagnosing ISUP ≥ 2 prostate cancer is challenging. This study aimed to determine whether canine detection could be beneficial addition to the ISUP ≥ 2 prostate cancer diagnostic protocol by creating a decision-making algorithm for men with suspected prostate cancer.
Methods: We conducted a prospective study at two urology institutions and a French veterinary school, including men with a suspicion of prostate cancer from November to April 2023, which were divided into two groups according to their prostate biopsy results.
Int J Colorectal Dis
September 2025
University of Aberdeen, Aberdeen, AB24 2ZD, Scotland, UK.
Background: The optimal management of synchronous rectal cancer (RC) and prostate cancer (PC) remains unclear. This systematic review evaluates treatment strategies and reports postoperative, oncological, and quality-of-life outcomes in patients treated with curative intent.
Methods: Following PRISMA guidelines, this systematic review was registered in PROSPERO (CRD42024598049).
Nature
September 2025
Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA.
Neural activity is increasingly recognized as a crucial regulator of cancer growth. In the brain, neuronal activity robustly influences glioma growth through paracrine mechanisms and by electrochemical integration of malignant cells into neural circuitry via neuron-to-glioma synapses. Outside of the central nervous system, innervation of tumours such as prostate, head and neck, breast, pancreatic, and gastrointestinal cancers by peripheral nerves similarly regulates cancer progression.
View Article and Find Full Text PDF