98%
921
2 minutes
20
Design of interfaces with thermodynamic and kinetic specificity is of great importance for hydrogen storage from both an applied and fundamental perspective. Here, in order to destabilize the metal hydride and protect the dehydrogenated products from oxidizing, a unique core-shell structure of porous Mg(BH ) -based framework with a thin layer (no more than 5 nm) of MgCl additives on the surface, has been proposed and synthesized via a wet-chemical method. The local structure and electronic state of the present complex system are systematically investigated to understand the correlation between the distribution of additives and dehydrogenation property of Mg(BH ) . A significant improvement is achieved for hydrogen desorption with chlorides: initial hydrogen release from MgCl decorated γ-phase Mg(BH ) particles commences at 100 °C and reaches a maximum of 9.4 wt% at 385 °C. Besides the decreased decomposition temperature, an activation barrier of about 76.4 kJ mol lower than that of Mg(BH ) without MgCl is obtained. Moreover, MgCl decoration can also prevent the whole decomposed system (both Mg- and B- elements) from oxidizing, which is a necessary condition to reversibility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202101989 | DOI Listing |
Adv Healthc Mater
September 2025
National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China.
Melasma is a facial hyperpigmentation disease that significantly impacts patients' quality of life. Clinical treatment is limited by the short half-lives and hydrophilicity of drugs, necessitating release curve optimization to maintain a stable therapeutic concentration for an extended period. This article utilizes natural biomaterials to design a core-shell structured microneedle, combining the "immediate release" and "delayed release" module to achieve programmed drug release.
View Article and Find Full Text PDFAdv Mater
September 2025
School of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Mi
Ammonia oxidation reaction (AOR) is critical for efficient ammonia utilization as a hydrogen carrier, yet state-of-the-art Pt-based catalysts suffer significant activity loss due to strong NO species (NO, NO) adsorption. Herein, Pd@Pt mesoporous core-shell nanospheres with interstitial Co in Pt shell (Pd@Pt-Co MCSN) are demonstrated as an excellent AOR electrocatalyst, which achieves a mass activity of 293.6 A g at 0.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu 610041, China. Electronic address: Zhaoy
Lanthanide-doped fluoride nanoparticles show great potential for optical thermometry and bioimaging. However, their applications are still constrained by inherent limitations in luminescence intensity and functional versatility. To overcome these challenges, we propose a core-active shell-inert shell nanostructure that integrates multifunctional capabilities within a single platform.
View Article and Find Full Text PDFLangmuir
September 2025
Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Kamrup, Assam 781039, India.
The efficient and sustainable remediation of contaminated water calls for catalytic systems that must clean broadly, endure widely, and last repeatedly. In this regard, we report the development of sulfonate-functionalized core-shell hydrogel beads embedded with synthesized gold nanoparticles (AuNPs) that exhibit intrinsic oxidase-like activity without requiring external light or chemical oxidants. The sulfonate ligands modulate the surface electronic environment of the AuNPs, facilitating singlet oxygen generation via a nonplasmonic, radiationless mechanism.
View Article and Find Full Text PDFInorg Chem
September 2025
Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, P. R. China.
Precisely structured nanoclusters provide ideal platforms for elucidating structural evolution and structure-activity relationships. However, mechanistic understanding of dynamic core-shell rearrangements has long been impeded by the elusive nature of intermediates during transformation processes. Here, we show that ligand engineering-driven asymmetric thiolate exchange enables atomic-level visualization of structural evolution, thereby overcoming the long-standing challenge of intermediate capture.
View Article and Find Full Text PDF