A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Intraspecific variation in elemental accumulation and its association with salt tolerance in Paspalum vaginatum. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Most plant species, including most crops, perform poorly in salt-affected soils because high sodium levels are cytotoxic and can disrupt the uptake of water and important nutrients. Halophytes are species that have evolved adaptations to overcome these challenges and may be a useful source of knowledge for salt tolerance mechanisms and genes that may be transferable to crop species. The salt content of saline habitats can vary dramatically by location, providing ample opportunity for different populations of halophytic species to adapt to their local salt concentrations; however, the extent of this variation, and the physiology and polymorphisms that drive it, remain poorly understood. Differential accumulation of inorganic elements between genotypes or populations may play an important role in local salinity adaptation. To test this, we investigated the relationships between population structure, tissue ion concentrations, and salt tolerance in 17 "fine-textured" genotypes of the halophytic turfgrass seashore paspalum (Paspalum vaginatum Swartz). A high-throughput ionomics pipeline was used to quantify the shoot concentration of 18 inorganic elements across three salinity treatments. We found a significant relationship between population structure and ion accumulation, with strong correlations between principal components derived from genetic and ionomic data. Additionally, genotypes with higher salt tolerance accumulated more K and Fe and less Ca than less tolerant genotypes. Together these results indicate that differences in ion accumulation between P. vaginatum populations may reflect locally adapted salt stress responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8473978PMC
http://dx.doi.org/10.1093/g3journal/jkab275DOI Listing

Publication Analysis

Top Keywords

salt tolerance
16
paspalum vaginatum
8
inorganic elements
8
population structure
8
ion accumulation
8
salt
7
intraspecific variation
4
variation elemental
4
accumulation
4
elemental accumulation
4

Similar Publications