In vitro pulsatile flow study in compliant and rigid ascending aorta phantoms by stereo particle image velocimetry.

Med Eng Phys

Department of Mechanical, Biomedical and Design, College of Engineering and Physical Sciences Aston University, Birmingham, B4 7ET, England; Department of Mechanical and Industrial Engineering, University of South Africa, Johannesburg, South Africa. Electronic address:

Published: October 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The aorta is a high risk region for cardiovascular disease (CVD). Haemodynamic patterns leading to CVD are not well established despite numerous experimental and numerical studies. Most overlook effects of arterial compliance and pulsatile flow. However, rigid wall assumptions can lead to overestimation of wall shear stress; a key CVD determinant. This work investigates the effect of compliance on aortic arch haemodynamics experiencing pulsatility. Rigid and compliant phantoms of the arch and brachiocephalic branch (BCA) were manufactured. Stereoscopic particle image velocimetry was used to observe velocity fields. Higher velocity magnitude was observed in the rigid BCA during acceleration. However, during deceleration, the compliant phantom experienced higher velocity. During deceleration, a low velocity region initiated and increased in size in the BCA of both phantoms with irregular shape in the compliant. At mid-deceleration, considerably larger recirculation was observed under compliance compared to rigid. Another recirculation region formed and increased in size on the inner wall of the arch in the compliant during late deceleration, but not rigid. The recirculation regions witnessed identify as high risk areas for atherosclerosis formation by a previous ex-vivo study. The results demonstrate necessity of compliance and pulsatility in haemodynamic studies to obtain highly relevant clinical outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.medengphy.2021.08.010DOI Listing

Publication Analysis

Top Keywords

pulsatile flow
8
particle image
8
image velocimetry
8
high risk
8
higher velocity
8
increased size
8
rigid recirculation
8
rigid
6
compliant
5
vitro pulsatile
4

Similar Publications

Geometric changes in the sigmoid sinus diverticulum (SSD) can alter its hemodynamic - a primary factor contributing to pulsatile tinnitus (PT). However, not all SSD cases lead to clinical PT symptoms. This study aims to investigate the influence of the diameter of the diverticulum (EDD) on the hemodynamics of the sigmoid sinus in PT.

View Article and Find Full Text PDF

Objective: To analyze and improve postoperative outcomes in patients with acute lower limb ischemia (ALLI) and previous reconstructive infrainguinal interventions.

Material And Methods: The authors analyzed postoperative outcomes after 54 repeated interventions in patients with thrombosis of common femoral artery bifurcation, deep femoral artery and non-functioning femoropopliteal (tibial) prosthesis.

Results: External-iliac-deep femoral replacement were performed in 28 (52%) patients, extended deep femoral artery repair - in 16 (29.

View Article and Find Full Text PDF

Aims: Non-pharmacological therapies for acute decompensated heart failure (HF) and cardiogenic shock have evolved considerably in recent decades. Short-term mechanical circulatory support (MCS) devices can be used as circulatory backup. While nearly all available devices use continuous flow, evidence indicates that pulsatile flow can be more effective.

View Article and Find Full Text PDF

Blood flow in the human cerebral cortex: Large-scale pial vascularization and 1D simulation.

PLoS Comput Biol

September 2025

Department of Mathematical and Computational Methods, National Laboratory for Scientific Computing, Petrópolis, Brazil.

Understanding cerebral circulation is crucial for early diagnosis and patient-oriented therapies for brain conditions. However, blood flow simulations at the organ scale have been limited. This work introduces a framework for modeling extensive vascular networks in the human cerebral cortex and conducting pulsatile blood flow simulations.

View Article and Find Full Text PDF

Dynamic alteration of blood vessel geometry is an inherent feature of the circulatory system. However, while the engineering of multiscale, branched, and interconnected blood vessels has been well explored, mimicking the dynamic behavior (e.g.

View Article and Find Full Text PDF