Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Dengue virus cocirculates globally as four serotypes (DENV1 to -4) that vary up to 40% at the amino acid level. Viral strains within a serotype further cluster into multiple genotypes. Eliciting a protective tetravalent neutralizing antibody response is a major goal of vaccine design, and efforts to characterize epitopes targeted by polyclonal mixtures of antibodies are ongoing. Previously, we identified two E protein residues (126 and 157) that defined the serotype-specific antibody response to DENV1 genotype 4 strain West Pac-74. DENV1 and DENV2 human vaccine sera neutralized DENV1 viruses incorporating these substitutions equivalently. In this study, we explored the contribution of these residues to the neutralization of DENV1 strains representing distinct genotypes. While neutralization of the genotype 1 strain TVP2130 was similarly impacted by mutation at E residues 126 and 157, mutation of these residues in the genotype 2 strain 16007 did not markedly change neutralization sensitivity, indicating the existence of additional DENV1 type-specific antibody targets. The accessibility of antibody epitopes can be strongly influenced by the conformational dynamics of virions and modified allosterically by amino acid variation. We found that changes at E domain II residue 204, shown previously to impact access to a poorly accessible E domain III epitope, impacted sensitivity of DENV1 16007 to neutralization by vaccine immune sera. Our data identify a role for minor sequence variation in changes to the antigenic structure that impacts antibody recognition by polyclonal immune sera. Understanding how the many structures sampled by flaviviruses influence antibody recognition will inform the design and evaluation of DENV immunogens. Dengue virus (DENV) is an important human pathogen that cocirculates globally as four serotypes. Because sequential infection by different DENV serotypes is associated with more severe disease, eliciting a protective neutralizing antibody response against all four serotypes is a major goal of vaccine efforts. Here, we report that neutralization of DENV serotype 1 by polyclonal antibody is impacted by minor sequence variation among virus strains. Our data suggest that mechanisms that control neutralization sensitivity extend beyond variation within antibody epitopes but also include the influence of single amino acids on the ensemble of structural states sampled by structurally dynamic virions. A more detailed understanding of the antibody targets of DENV-specific polyclonal sera and factors that govern their access to antibody has important implications for flavivirus antigen design and evaluation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8577358PMC
http://dx.doi.org/10.1128/JVI.00956-21DOI Listing

Publication Analysis

Top Keywords

dengue virus
12
antibody response
12
genotype strain
12
antibody
11
conformational dynamics
8
polyclonal sera
8
cocirculates globally
8
globally serotypes
8
amino acid
8
eliciting protective
8

Similar Publications

AAV-mediated delivery of a broadly neutralizing anti-flavivirus antibody protects against dengue and Zika viruses in a mouse model.

Mol Ther

September 2025

Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan,; Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 114201, Taiwan, ; Biomedical Translation Research Center, Academia Sinica, Taipei 115201, Taiwan,. Electronic address:

Flaviviruses contain many important human pathogens such as dengue virus (DENV) and Zika virus (ZIKV), for which effective and safe vaccines are still lacking, mainly because pre-existing cross-reactive non-neutralizing antibodies may exacerbate subsequent infections with related flaviviruses. To overcome this challenge, we explore Vectored ImmunoProphylaxis (VIP), which involves the passive transfer of protective antibody genes via viral vectors for in vivo expression. We utilized a recombinant adeno-associated virus (rAAV) to express a broad anti-flavivirus neutralizing human monoclonal antibody, bnAb 752-2C8, and tested its protection against four serotypes of DENV and ZIKV.

View Article and Find Full Text PDF

Objective: To analyze the temporal trend of dengue incidence and lethality rates and the proportions of its serotypes, in the different macro-regions of Brazil, between 2001 and 2022. In particular, the immediate and gradual effects of these indicators were verified in the periods before and after the publication of the National Guidelines for the Prevention and Control of Dengue Epidemics.

Methods: This was an interrupted time series analysis.

View Article and Find Full Text PDF

Dengue Virus Biosafety: An Analysis of Evidence, Global Inconsistencies, and Risk Gaps.

Appl Biosaf

August 2025

Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.

Introduction: Dengue virus (DENV) poses a significant global health threat, particularly in tropical and subtropical regions, where it is primarily transmitted by spp. mosquitoes. Its biosafety and biosecurity management present unique challenges due to both its vector-borne nature and rare instances of nonvector transmission.

View Article and Find Full Text PDF

Identification of multifunctional T-cell peptide epitopes for the development of DNA vaccines against dengue virus.

Hum Vaccin Immunother

December 2025

Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China.

Dengue virus (DENV) is an important arthropod-borne virus that poses a global health threat, with half of the world's population at risk of infection. Currently, there is a lack of safe and effective vaccines for its prevention. Antibody-dependent enhancement (ADE) occurs when cross-reactive antibodies fail to neutralize heterologous DENV serotypes effectively, facilitating viral entry into Fc receptor-bearing cells and leading to more severe disease.

View Article and Find Full Text PDF