98%
921
2 minutes
20
Purpose: It is unclear whether neuropathological structural changes in the peripheral nervous system and central nervous system can occur in the spared nerve injury model. In this study, we investigated the pathological changes in the nervous system in a model of neuropathic pain as well as the effects of electroacupuncture (EA) and pregabalin (PGB) administration as regards pain relief and tissue repair.
Patients And Methods: Forty adult male SD rats were equally and randomly divided into 4 groups: spared nerve injury group (SNI, n = 10), SNI with electroacupuncture group (EA, n = 10), SNI with pregabalin group (PGB, n =10) and sham-operated group (Sham, n=10). EA and PGB were given from postoperative day (POD) 14 to 36. EA (2 Hz and 100 Hz alternating frequencies, intensities ranging from 1-1.5-2 mA) was applied to the left "zusanli" (ST36) and "Yanglingquan" (GB34) acupoints for 30 minutes. The mechanical withdrawal thresholds (MWTs) were tested with von Frey filaments. Moreover, the organizational and structural alterations of the bilateral prefrontal cortex, hippocampus, sciatic nerves and the thoracic, lumbar spinal cords and dorsal root ganglions (DRGs) were examined via light and electron microscopy.
Results: MWTs of left hind paw demonstrated a remarkable decrease in the SNI model (P < 0.05). In the SNI model, ultrastructural changes including demyelination and damaged neurons were observed at all levels of the peripheral nervous system (PNS) and central nervous system (CNS). In addition, EA improved MWTs and restored the normal structure of neurons. However, the effect was not found in the PGB treatment group.
Conclusion: Chronic pain can induce extensive damage to the central and peripheral nervous systems. Meanwhile, EA and PGB can both alleviate chronic pain syndromes in rats, but EA also restores the normal cellular structures, while PGB is associated with no improvement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8449649 | PMC |
http://dx.doi.org/10.2147/JPR.S322964 | DOI Listing |
Alzheimers Res Ther
September 2025
Department of Neurology, Saarland University, Kirrberger Straße, 66421, Homburg/Saar, Germany.
Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.
View Article and Find Full Text PDFJ Neuroeng Rehabil
September 2025
Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, 72076, Tübingen, Germany.
Innovative technology allows for personalization of stimulation frequency in dual-site deep brain stimulation (DBS), offering promise for challenging symptoms in advanced Parkinson's disease (PD), particularly freezing of gait (FoG). Early results suggest that combining standard subthalamic nucleus (STN) stimulation with substantia nigra pars reticulata (SNr) stimulation may improve FoG outcomes. However, patient response and the optimal SNr stimulation frequency vary.
View Article and Find Full Text PDFBMC Ophthalmol
September 2025
Department of Ophthalmology, Institute of Medicine, Tribhuvan University, B.P Koirala Lions Centre For Ophthalmic Studies, Kathmandu, Nepal.
Background: To evaluate the ganglion cell complex thickness in patients taking oral hydroxychloroquine.
Methods: In this hospital-based, cross-sectional, non-interventional, comparative study, 87 eyes of 87 patients taking hydroxychloroquine were recruited. All the patients underwent complete ophthalmological evaluation along with dilated fundus examination.
J Mol Neurosci
September 2025
Department of Physiology, School of Medicine, Dokuz Eylul University, Izmir, Turkey.
The ketogenic diet (KD), a high-fat, low-carbohydrate regimen, has been shown to exert neuroprotective effects in various neurological models. This study explored how KD-alone or combined with antibiotic-induced gut microbiota depletion-affects cognition and neuroinflammation in aging. Thirty-two male rats (22 months old) were assigned to four groups (n = 8): control diet (CD), ketogenic diet (KD), antibiotics with control diet (AB), and antibiotics with KD (KDAB).
View Article and Find Full Text PDFNat Rev Cancer
September 2025
Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
Neurotoxicity is a common and potentially severe adverse effect from conventional and novel cancer therapy. The mechanisms that underlie clinical symptoms of central and peripheral nervous system injury remain incompletely understood. For conventional cytotoxic chemotherapy or radiotherapy, direct toxicities to brain structures and neurovascular damage may result in myelin degradation and impaired neurogenesis, which eventually translates into delayed neurodegeneration accompanied by cognitive symptoms.
View Article and Find Full Text PDF