98%
921
2 minutes
20
Accurate mapping of soil organic carbon (SOC) is critical to improve C management and develop sustainable management policies. However, it is constrained by local variations of the model parameters under complex topography, especially in hills. This study applied a methodological framework to optimize the spatial prediction of SOC in the hilly areas during 1981-2012 by quantifying the relative importance of environmental factors, which include both qualitative factors and quantitative variables. Results showed that SOC increased twofold with a moderate spatial dependence during the past 32 years. During this period, land use patterns, soil groups, topographic factors, and vegetation coverage had significant impacts on the SOC changes (p < 0.01). Specifically, the impact of land use patterns has exceeded the impact of soil groups and became the dominant factor affecting SOC changes. Meanwhile, impacts from the topographic factors and vegetation coverage have substantially declined. Based on those results, a combinatorial approach (LS_RBF_HASM) was developed to map SOC using radial basis function neural network (RBF) and high accuracy surface modelling (HASM), and to generate more detailed spatial mapping relationships between SOC and the affecting factors. Compared with ordinary kriging (OK), land use-soil group units (LS) and HASM combined (LS_HASM), multiple linear regression (MLR) and HASM combined with LS (LS_MLR_HASM); LS_RBF_HASM showed a better performance with a decline of 6.3%-37.7% prediction errors and more accurate spatial patterns due to the quantitative combination of auxiliary environmental variables and more information on the SOC variations within local factors captured by RBF and HASM. Additionally, MLR may partially undermine the relationship of the internal spatial structure due to the highly nonlinear relation between SOC and environmental variables. This methodological framework highlights the optimization of more environmental factors and the calculation of spatial variability within local factors and provides a more accurate approach for SOC mapping in hills.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2021.113718 | DOI Listing |
Environ Sci Technol
September 2025
State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
The turnover of dissolved organic matter (DOM) in soil regulated by biodegradable microplastics (MPs) has garnered much attention due to its profound impact on the storage and stability of soil organic matter. However, the transformation and reactivity of plant-derived and microbially derived DOM by microorganisms adapted to biodegradable MPs, and the involved microbial physiological processes, remain nearly unknown. Here, we added virgin and aged polylactic acid (PLA) and polyhydroxyalkanoate (PHA) to agricultural soils and incubated for 56 days.
View Article and Find Full Text PDFFolia Microbiol (Praha)
September 2025
Soil Science Division, Bangladesh Wheat and Maize Research Institute, Dinajpur, 5200, Bangladesh.
The aim of the study was to reduce the chemical fertilizers with microbial inoculant-rich vermicompost, which enhanced the growth, flowering, and soil health of the tuberose crop. A total of six treatments were applied with reducing doses of synthetic fertilizers under a factorial randomized design and replicated thrice. In this study, vermicompost (VC) made from cow dung and vegetable waste utilizing Eisenia foetida and their mixed biomass were enriched with microbial inoculants and assessed for their impact on microbial and enzymatic populations including urease, acid phosphatase activity and dehydrogenase activity in soil, nutrient availability, and tuberose development and flowering.
View Article and Find Full Text PDFNaturwissenschaften
September 2025
Laboratório de Ecologia E Conservação de Invertebrados, LECIN, Departamento de Ecologia E Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras, PO Box 3037, CEP 37.203-202, Lavras, MG, Brasil.
Fire is a key natural disturbance influencing physical, chemical, and biological processes in the Cerrado. Ash, a fire byproduct, may significantly influence soil macrofauna through its chemical properties. Dung beetles (Scarabaeinae), critical components of Cerrado soil macrofauna, provide key ecological functions and services.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
Institute of Environmental Studies, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
India produces an estimated 6.38 million tons of surplus sugarcane trash annually. When burned in fields, this trash emits approximately 12,948 kg CO equivalent greenhouse gases per hectare and causes nutrient losses (41 kg ha nitrogen, 5.
View Article and Find Full Text PDFFront Mol Biosci
August 2025
Department of Environmental Science, University of Arizona, Tucson, AZ, United States.
Introduction: Peatlands store up to a third of global soil carbon, and in high latitudes their litter inputs are increasing and changing in composition under climate change. Although litter significantly influences peatland carbon and nutrient dynamics by changing the overall lability of peatland organic matter, the physicochemical mechanisms of this impact-and thus its full scope-remain poorly understood.
Methods: We applied multimodal metabolomics (UPLC-HRMS, H NMR) paired with C Stable Isotope-Assisted Metabolomics (SIAM) to track litter carbon and its potential priming effects on both existing soil organic matter and carbon gas emissions.