Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

TAR DNA-binding protein-43 (TDP-43) is known to accumulate in ubiquitinated inclusions of amyotrophic lateral sclerosis affected motor neurons, resulting in motor neuron degeneration, loss of motor functions, and eventually death. Rapamycin, an mTOR inhibitor and a commonly used immunosuppressive drug, has been shown to increase the survivability of Amyotrophic Lateral Sclerosis (ALS) affected motor neurons. Here we present a transgenic, TDP-43-A315T, mouse model expressing an ALS phenotype and demonstrate the presence of ubiquitinated cytoplasmic TDP-43 aggregates with > 80% cell death by 28 days post differentiation in vitro. Embryonic stem cells from this mouse model were used to study the onset, progression, and therapeutic remediation of TDP-43 aggregates using a novel microfluidic rapamycin concentration gradient generator. Results using a microfluidic device show that ALS affected motor neuron survival can be increased by 40.44% in a rapamycin dosage range between 0.4-1.0 µM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8438029PMC
http://dx.doi.org/10.1038/s41598-021-97405-1DOI Listing

Publication Analysis

Top Keywords

als motor
12
motor neuron
12
neuron degeneration
8
amyotrophic lateral
8
lateral sclerosis
8
motor neurons
8
mouse model
8
tdp-43 aggregates
8
motor
6
microfluidic approach
4

Similar Publications

Fatigue remains a poorly understood symptom in individuals with ALS, and little is known about its associtation with other symptoms, including functional impairment, cognition, and pain. To identify the levels of fatigue, pain, ALSFRS-R, and cognition of a Brazilian group of individuals with ALS, in order to verify possible influences between these symptoms and fatigue. This is a cross-sectional study conducted with individuals with ALS who were recruited intentionally, using a non-probabilistic sampling method.

View Article and Find Full Text PDF

Neurodegenerative diseases and spinal cord injuries (SCI) pose a significant burden on the healthcare system globally. Diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease precipitate cognitive, motor, and behavioral deficits. Parallelly, spinal cord injuries produce sensory and motor deficits, which are burdensome psychologically, socially, and economically.

View Article and Find Full Text PDF

In vivo self-assembled siRNAs ameliorate neurological pathology in TDP-43-associated neurodegenerative disease.

Brain

September 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Provincial Key Laboratory of Non-human Primate Research, Guangdong-Hong Kong-Macau Institute of CNS Rege

Abnormal accumulation of TAR DNA-binding protein-43 (TDP-43) is a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Small interfering RNAs (siRNAs) targeting TDP-43 offer potential therapeutic strategies for these diseases. However, efficient and safe delivery of siRNAs to the central nervous system (CNS) remains a critical challenge.

View Article and Find Full Text PDF

Reliable change indices for the cognitive section of Portuguese version of the Edinburgh Cognitive and Behavioural ALS screen (ECAS).

Amyotroph Lateral Scler Frontotemporal Degener

September 2025

Faculdade de Medicina, Centro de Estudos Egas Moniz, Universidade de Lisboa, Lisboa, Portugal.

This study aimed to derive standardized regression-based (SRB) reliable change indices (RCIs) for the cognitive section of the Portuguese Edinburgh Cognitive and Behavioral ALS Screen (ECAS-C). Forty-nine MND patients undergoing the ECAS were followed-up (T1) at 7.2 ± 2 months (range = 5-12).

View Article and Find Full Text PDF