Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The protozoan Plasmodium falciparum is the main aetiological agent of tropical malaria. Characteristic of the phylum is the presence of a plastid-like organelle which hosts several homologs of plant proteins, including a ferredoxin (PfFd) and its NADPH-dependent reductase (PfFNR). The PfFNR/PfFd redox system is essential for the parasite, while mammals share no homologous proteins, making the enzyme an attractive target for novel and much needed antimalarial drugs. Based on previous findings, three chemically reactive residues important for PfFNR activity were identified: namely, the active-site Cys99, responsible for hydride transfer; Cys284, whose oxidation leads to an inactive dimeric form of the protein; and His286, which is involved in NADPH binding. These amino acid residues were probed by several residue-specific reagents and the two cysteines were shown to be promising targets for covalent inhibition. The quantitative and qualitative description of the reactivity of few compounds, including a repurposed drug, set the bases for the development of more potent and specific antimalarial leads.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2021.09.008DOI Listing

Publication Analysis

Top Keywords

covalent inhibition
8
antimalarial drugs
8
inhibition p falciparum
4
p falciparum ferredoxin-nadp
4
ferredoxin-nadp reductase
4
reductase exploring
4
exploring alternative
4
alternative strategies
4
strategies development
4
development antimalarial
4

Similar Publications

An Activatable and Covalent Tumor-Associated Antigen Capturer Enabling Systemic Injection for Promoted Antitumor Immunity.

J Am Chem Soc

September 2025

Frontiers Science Center for New Organic Matter, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and Academy for Advanced Interdisciplinary Studies, Nankai University, Tianjin 300071, PR China.

Antigen-capturing nanomaterials hold great promise for cancer immunotherapy; however, the need for tumor localized administration and limited antigen-binding affinity remains the "Achilles heel" of this strategy. Herein, we present a tumor microenvironment (TME)-activatable nanoplatform, TDR848@FPB, designed for systemic administration and enhanced covalent capture of tumor-associated antigens (TAAs), enabling effective immunotherapy with minimal off-target effects and independent of localized tumor administration. This platform encapsulates a photosensitizer-conjugated, light-activated toll-like receptor (TLR) agonist, which induces immunogenic cell death and triggers a pro-inflammatory TME conducive to antigen capture upon light irradiation.

View Article and Find Full Text PDF

[Research status and future direction of irreversible EGFR-TKI in non-small cell lung cancer].

Zhonghua Jie He He Hu Xi Za Zhi

September 2025

Department of nursing, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China.

Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKI) are important treatments for EGFR mutant non-small cell lung cancer (NSCLC). However, the first and second generation EGFR-TKI face clinical limitations due to acquired resistance, such as the T790M mutation. Irreversible EGFR-TKI can significantly prolong the survival of patients by enhancing the inhibition of drug-resistant mutations through the covalent binding mechanism.

View Article and Find Full Text PDF

CDK7 has emerged as a cancer target because of its pivotal roles in cell cycle progression and transcription. Several CDK7 inhibitors (CDK7i) are now in clinical evaluation. Identifying patients most likely to respond to treatment and early detection of tumour evolution towards resistance are necessary for optimal implementation of cancer therapies.

View Article and Find Full Text PDF

Although temozolomide (TMZ) is routinely used in the treatment of glioblastoma multiforme, it is characterized by low stability, a short half-life, and serious side effects. Therefore, a new system for the effective, targeted delivery of TMZ based on superparamagnetic iron oxide nanoparticles (SPION) has been proposed. The nanoparticles were coated with hyaluronic acid, which acted as a stabilizing shell and targeting unit capable of effectively interacting with glioblastoma cells via the CD44 receptor.

View Article and Find Full Text PDF

Anti-Aβ antibodies are important tools for identifying structural features of aggregates of the Aβ peptide and are used in many aspects of Alzheimer's disease (AD) research. Our laboratory recently reported the generation of a polyclonal antibody, pAb2AT-L, that is moderately selective for oligomeric Aβ over monomeric and fibrillar Aβ and recognizes the diffuse peripheries of Aβ plaques in AD brain tissue but does not recognize the dense fibrillar plaque cores. This antibody was generated against 2AT-L, a structurally defined Aβ oligomer mimic composed of three Aβ-derived β-hairpins arranged in a triangular fashion and covalently stabilized with three disulfide bonds.

View Article and Find Full Text PDF