Supramolecular Transmembrane Ion Channels Formed by Multiblock Amphiphiles.

Acc Chem Res

Department of Applied Chemistry, Graduate School of Engineering and Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.

Published: October 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Transmembrane proteins located within biological membranes play a crucial role in a variety of important cellular processes, such as energy conversion and signal transduction. Among them, ion channel proteins that can transport specific ions across the biological membranes are particularly important for achieving precise control over those processes. Strikingly, approximately 20% of currently approved drugs are targeted to ion channel proteins within membranes. Thus, synthetic molecules that can mimic the functions of natural ion channel proteins would possess great potential in the sensing and manipulation of biologically important processes, as well as in the purification of key industrial materials.Inspired by the sophisticated structures and functions of natural ion channel proteins, our research group developed a series of multiblock amphiphiles (MAs) composed of a repetitive sequence of flexible hydrophilic oligo(ethylene glycol) chains and rigid hydrophobic oligo(phenylene-ethynylene) units. These MAs can be effectively incorporated into the hydrophobic layer of lipid bilayer membranes and adopt folded conformations, with their hydrophobic units stacked in a face-to-face configuration. Moreover, the folded MAs can self-assemble within the membranes and form supramolecular nanopores that can transport ions across the membranes. In these studies, we focused on the structural flexibility of the MAs and decided to design new molecules able to respond to various external stimuli in order to control their transmembrane ion transport properties. For this purpose, we developed new MAs incorporating sterically bulky groups within their hydrophobic units and demonstrated that their transmembrane ion transport properties could be controlled via mechanical forces applied to the membranes. Moreover, we developed MAs incorporating phosphate ester groups that functioned as ligand-binding sites at the boundary between hydrophilic and hydrophobic units and found that these MAs exhibited transmembrane ion transport properties upon binding with aromatic amine ligands, even within the biological membranes of living cells. We further modified the hydrophobic units of the MAs with fluorine atoms and demonstrated their voltage-responsive transmembrane ion transport properties. These molecular design principles were extended to the development of a transmembrane anion transporter whose transport mechanism was studied by all-atom molecular dynamics simulations.This Account describes the basic principles of the molecular designs of MAs, the characterization of their self-assembled structures within a lipid bilayer, and their transmembrane ion transport properties, including their responsiveness to stimuli. Finally, we discuss future perspectives on the manipulation of biological processes based on the characteristic features of MAs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.accounts.1c00397DOI Listing

Publication Analysis

Top Keywords

transmembrane ion
24
ion transport
20
transport properties
20
ion channel
16
channel proteins
16
hydrophobic units
16
biological membranes
12
units mas
12
ion
10
mas
10

Similar Publications

The cytoplasmic N- and C-termini are dispensable for SLAH3 to mediate nitrate-dependent ammonium detoxification in Arabidopsis.

Biochem Biophys Res Commun

August 2025

Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China. Electronic address: xiaochb@lz

Ammonium (NH) toxicity significantly limits nitrogen use efficiency (NUE) in agriculture. Nitrate (NO) supplementation mitigates this toxicity, with the anion channel SLAH3 playing a central role by mediating NO efflux to counteract NH-induced rhizosphere acidification. SLAH3, a plasma membrane protein with ten transmembrane domains and cytosolic N- and C-termini, is intrinsically silent.

View Article and Find Full Text PDF

Cancer immunotherapy has transformed oncological treatment paradigms, yet tumor resistance and immune evasion continue to limit therapeutic efficacy. Mitochondria-targeting organic sensitizers (MTOSs) represent an emerging class of therapeutic agents that exploit mitochondrial dysfunction as a convergent node for tumor elimination and immune activation. As central regulators of cellular metabolism, apoptotic signaling, and immune cell function, mitochondria serve as critical determinants of tumor progression and the immunological landscape within the tumor microenvironment (TME).

View Article and Find Full Text PDF

Introduction: Cystic fibrosis (CF) is a monogenic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a Cl/HCO ion channel located at the apical plasma membrane (PM) of epithelial cells. CFTR dysfunction disrupts epithelial barrier integrity, drives progressive airway remodelling and has been associated with epithelial-to-mesenchymal transition (EMT), a process in which cells lose epithelial properties and acquire mesenchymal characteristics. We previously demonstrated that mutant CFTR directly drives partial EMT, independently of secondary events such as bacterial infection or inflammation.

View Article and Find Full Text PDF

The ion channel-forming natural product amphotericin B (AmB) can serve as a molecular prosthetic for the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel and thereby restore host defenses in cultured cystic fibrosis (CF) airway epithelia. This is despite the fact that the permeability of AmB-based channels favors cations, and these channels lose their capacity to increase airway surface liquid (ASL) pH in CF airway epithelia at high concentrations. We hypothesize that modifying such channels to favor anion permeability would make them more CFTR-like and thus increase their potential therapeutic effects compared to AmB.

View Article and Find Full Text PDF

The plasma membrane is actively regulated by lipid transporters that create electrochemical gradients between leaflets, and passively by scramblases that dissipate these gradients. Membrane properties such as lipid packing are critical for the proper function of transmembrane proteins, particularly mechanosensitive ion channels. Mechanosensation is a key component of many sensory processes including balance, and hearing.

View Article and Find Full Text PDF