98%
921
2 minutes
20
Safety and high-voltage operation are key metrics for advanced, solid-state energy storage devices to power low- or zero-emission HEV or EV vehicles. In this study, we propose the modification of single-ion conducting polyelectrolytes by designing novel block copolymers, which combine one block responsible for high ionic conductivity and the second block for improved mechanical properties and outstanding electrochemical stability. To synthesize such block copolymers, the ring opening polymerization (ROP) of trimethylene carbonate (TMC) monomer by the RAFT-agent having a terminal hydroxyl group is used. It allows for the preparation of a poly(carbonate) macro-RAFT precursor that is subsequently applied in RAFT copolymerization of lithium 1-[3-(methacryloyloxy)propylsulfonyl]-1-(trifluoromethylsulfonyl)imide and poly(ethylene glycol) methyl ether methacrylate. The resulting single-ion conducting block copolymers show improved viscoelastic properties, good thermal stability ( up to 155 °C), sufficient ionic conductivity (up to 3.7 × 10 S cm at 70 °C), and high lithium-ion transference number (0.91) to enable high power. Excellent plating/stripping ability with resistance to dendrite growth and outstanding electrochemical stability window (exceeding 4.8 V vs Li/Li at 70 °C) are also achieved, along with enhanced compatibility with composite cathodes, both LiNiMnCoO - NMC and LiFePO - LFP, as well as the lithium metal anode. Lab-scale truly solid-state Li/LFP and Li/NMC lithium-metal cells assembled with the single-ion copolymer electrolyte demonstrate reversible and very stable cycling at 70 °C delivering high specific capacity (up to 145 and 118 mAh g, respectively, at a C/20 rate) and proper operation even at a higher current regime. Remarkably, the addition of a little amount of propylene carbonate (∼8 wt %) allows for stable, highly reversible cycling at a higher C-rate. These results represent an excellent achievement for a truly single-ion conducting solid-state polymer electrolyte, placing the obtained ionic block copolymers on top of polyelectrolytes with highest electrochemical stability and potentially enabling safe, practical Li-metal cells operating at high-voltage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8397401 | PMC |
http://dx.doi.org/10.1021/acs.macromol.1c00981 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, United States.
Distinctive polymer brushes (PBs) play a crucial role in providing a nonpreferential (neutral) surface for vertical orientation of block copolymers (BCPs). This bottom-up approach effectively aligns the formation of vertical lamellar and cylinder lattice structures from the BCP, which is crucial for nanopatterning and other applications. In conventional BCP self-assembly techniques, random copolymer brushes are commonly employed to achieve substrate neutrality.
View Article and Find Full Text PDFBiomacromolecules
September 2025
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
Triple-negative breast cancer (TNBC) remains a formidable clinical challenge due to its aggressive behavior, lack of therapeutic targets, and poor prognosis. The PI3K/AKT/mTOR pathway is highly activated in TNBC, making it a promising therapeutic target. Conventional PEGylated nanocarriers often face challenges, such as accelerated blood clearance and lysosomal trapping.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
Adhesives are important in creating multilayer products, such as in packaging and construction. Most current hot-melt adhesives such as poly(ethylene-co-vinyl acetate) (EVA) and polyurethanes lack chemical recyclability and do not easily de-bond, complicating recycling. Here, we achieved tunable adhesive properties of chemically recyclable polyolefin-like multiblock copolymers through regulating the incorporation of crystalline hard blocks, amorphous soft blocks, and ester content highlighted by adhesive strengths up to 6.
View Article and Find Full Text PDFAnal Chem
September 2025
Department of Applied Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.
In this Article, we present a novel data analysis method for the determination of copolymer composition from low-resolution mass spectra, such as those recorded in the linear mode of time-of-flight (TOF) mass analyzers. Our approach significantly extends the accessible molecular weight range, enabling reliable copolymer composition analysis even in the higher mass regions. At low resolution, the overlapping mass peaks in the higher mass range hinder a comprehensive characterization of the copolymers.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulju-gun, UNIST-gil 50, Ulsan, 44919, Republic of Korea.
Structurally colored colloids, or photonic pigments, offer a sustainable alternative to conventional dyes, yet existing systems are constrained by limited morphologies and complex synthesis. In particular, achieving angle-independent color typically relies on disordered inverse architectures formed from synthetically demanding bottlebrush block copolymers (BCPs), hindering scalability and functional diversity. Here, we report a conceptually distinct strategy to assemble three-dimensional inverse photonic glass microparticles using amphiphilic linear BCPs (poly(styrene-block-4-vinylpyridine), PS-b-P4VP) via an emulsion-templated process.
View Article and Find Full Text PDF