Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In this study, the interactions between daidzein and methanol were studied to investigate isoflavone extraction. The complexes of MeOH-daidzein = 1:1, 2:1, 4:1, and 7:1 were studied using DFT/B3LYP-D3. According to the findings of this study, daidzein can act as a hydrogen bond donor as well as an acceptor. Binding energies demonstrate that more MeOH molecules interacting with daidzein could give more stability to the system. The strengths of the hydrogen bonds reveal that daidzein prefers to act as a hydrogen bond donor than an acceptor. The atoms in molecules (AIM) topological analysis was performed to analyze the nature of the hydrogen bonds. Moreover, daidzein, genistein, and glycitein are the most common soybean isoflavones, and their properties during extraction were also studied. The binding energies show that the soy isoflavone genistein is more reactive with the solvent than daidzein, followed by glycitein. The extraction conditions of the three common soy isoflavones in MeOH solution were obtained at 321, 328, and 348 K for genistein, daidzein, and glycitein, respectively. The generalized Kohn-Sham energy decomposition analysis (GKS-EDA) results indicate that the solute-solvent molecular interactions are typical hydrogen bonds with predominantly electrostatic and exchange energies in nature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8388105 | PMC |
http://dx.doi.org/10.1021/acsomega.1c02348 | DOI Listing |