A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Spatial-Aware Texture Transformer for High-Fidelity Garment Transfer. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Garment transfer aims to transfer the desired garment from a model image with the desired clothing to a target person, which has attracted a great deal of attention due to its wider potential applications. However, considering the model and target persons are often given at different views, body shapes and poses, realistic garment transfer is facing the following challenges that have not been well addressed: 1) deforming the garment; 2) inferring unobserved appearance; 3) preserving fine texture details. To tackle these challenges, we propose a novel SPatial-Aware Texture Transformer (SPATT) model. Different from existing models, SPATT establishes correspondence and infers unobserved clothing appearance by leveraging the spatial prior information of a UV-space. Specifically, the source image is transformed into a partial UV texture map guided by the extracted dense pose. To better infer the unseen appearance utilizing seen region, we first propose a novel coordinate-prior map that defines the spatial relationship between the coordinates in the UV texture map, and design an algorithm to compute it. Based on the proposed coordinate-prior map, we present a novel spatial-aware texture generation network to complete the partial UV texture. In the second stage, we first transform the completed UV texture to fit the target person. To polish the details and improve realism, we introduce a refinement generative network conditioned on the warped image and source input. Compared with existing frameworks as shown experimentally, the proposed framework can generate more realistic images with better-preserved texture details. Furthermore, difficult cases where two persons have large pose and view differences can also be well handled by SPATT.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2021.3107235DOI Listing

Publication Analysis

Top Keywords

spatial-aware texture
12
garment transfer
12
texture transformer
8
target person
8
texture
8
texture details
8
propose novel
8
novel spatial-aware
8
partial texture
8
texture map
8

Similar Publications