98%
921
2 minutes
20
The microenvironment, or niche, regulates stem cell fate and improves differentiation efficiency. Human umbilical cord mesenchymal stem cells (hUC-MSCs) are ideal cell source for bone tissue engineering. However, the role of the microenvironments in hUC-MSC-based bone regeneration is not yet fully understood. This study is aimed at investigating the effects of the culture microenvironment (hUC-MSCs, nano-hydroxyapatite/collagen/poly (L-lactide) (nHAC/PLA), osteogenic media (OMD), and recombinant human bone morphogenetic protein-7 (rhBMP-7)) and the transplanted microenvironment (ectopic and orthotopic) on bone regeneration ability of hUC-MSCs. The isolated hUC-MSCs showed self-renewal potential and MSCs' characteristics. In the two-dimensional culture microenvironment, OMD or OMD with rhBMP-7 significantly enhanced hUC-MSCs' osteocalcin immunofluorescence staining, alkaline phosphatase, and Alizarin red staining; OMD with rhBMP-7 exhibited the highest ALP secretion and mineralized matrix formation. In the three-dimensional culture microenvironment, nHAC/PLA supported hUC-MSCs' adhesion, proliferation, and differentiation; the microenvironment containing OMD or OMD and rhBMP-7 shortened cell proliferation progression and made osteogenic differentiation progression advance; rhBMP-7 significantly attenuated the inhibiting effect of OMD on hUC-MSCs' proliferation and significantly enhanced the promoting effect of OMD on gene expression and protein secretion of osteogenic differentiation markers, calcium and phosphorous concentration, and mineralized matrix formation. The three-dimensional culture microenvironment containing OMD and rhBMP-7 induced hUC-MSCs to form the most new bones in ectopic or orthotopic microenvironment as proved by microcomputed tomography and hematoxylin and eosin staining, but bone formation in orthotopic microenvironment was significantly higher than that in ectopic microenvironment. The results indicated that the combination of hUC-MSCs+nHAC/PLA+OMD+rhBMP-7 microenvironment and orthotopic microenvironment provided a more optimized niche for bone regeneration of hUC-MSCs. This study elucidates that hUC-MSCs and their local microenvironment, or niche, play an important role in hUC-MSC-based bone regeneration. The endogenously produced BMP may serve an important regulatory role in the process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8384552 | PMC |
http://dx.doi.org/10.1155/2021/4465022 | DOI Listing |
Periodontol 2000
September 2025
Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.
This systematic review and meta-analysis aimed to evaluate the long-term clinical outcomes of regenerative procedures compared with access flap surgery for the treatment of intrabony defects, with a minimum follow-up period of 5 years. A systematic review protocol following PRISMA guidelines was conducted. Both electronic and manual searches were conducted to identify randomized clinical trials (RCTs) on regenerative treatment of deep intrabony defects (≥3 mm) with a follow-up of at least 5 years.
View Article and Find Full Text PDFWounds
August 2025
Faculty of Physical Therapy, Cairo University, Cairo, Giza, Egypt.
Background: Charcot foot is a debilitating complication of peripheral neuropathy and is primarily associated with diabetes, leading to structural damage, ulceration, and osteomyelitis. Pulsed electromagnetic field (PEMF) therapy is a promising treatment modality for wound healing and bone metabolism.
Objective: To evaluate the efficacy of PEMF therapy in promoting bone growth and ulcer healing in patients with Charcot foot ulcers.
Ultrasound Med Biol
September 2025
State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China. Electronic address:
Objective: Diabetic foot ulcer (DFU) is a common and serious complication of diabetes, often leading to infection, amputation and poor quality of life. Bone marrow mesenchymal stem cells (BMSCs) have shown promise in treating chronic wounds, but their therapeutic efficacy is limited due to poor survival and low regenerative activity. Low-intensity pulsed ultrasound (LIUS), a non-invasive physical modality, has been shown to enhance the biological behavior of BMSCs.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, 200444, China; National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, 200444, China; Shanghai Key Laboratory of Intelligen
Osteochondral defects caused by trauma, obesity, tumors, and degenerative osteoarthropathies severely impair patients' quality of life. Multilayer tissue engineering scaffolds offer promising strategies for osteochondral repair by enhancing structural biomimicry. In this study, a triple-layer GelMA-alginate-based osteochondral scaffold (TCOS) was fabricated using an enhanced multi-axis, multi-process, multi-material 3D bioprinting system (MAPM-BPS).
View Article and Find Full Text PDFBraz Oral Res
September 2025
Universidade de São Paulo - USP, Bauru School of Dentistry, Department of Biological Sciences, Bauru, SP, Brazil.
Angiotensin II (Ang II) releases inflammatory mediators from several cell types. The objective of this study was to investigate the potential of Ang II to induce mRNA expression of inflammatory mediators in primary cultured fibroblast-like cells isolated from gingival and periodontal ligament tissues. A synergistic effect of co-treatment with Ang II and Interleukin-1β (IL1β) on the mRNA expression of inflammatory mediators was explored.
View Article and Find Full Text PDF