Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study was the first comprehensive investigation of the dependence of mitochondrial enzyme response (catalytic subunits of mitochondrial complexes (MC) I-V, including NDUFV2, SDHA, Cyt b, COX1 and ATP5A) and mitochondrial ultrastructure in the rat cerebral cortex (CC) on the severity and duration of in vivo hypoxic exposures. The role of individual animal's resistance to hypoxia was also studied. The respiratory chain (RC) was shown to respond to changes in environmental [O] as follows: (a) differential reaction of mitochondrial enzymes, which depends on the severity of the hypoxic exposure and which indicates changes in the content and catalytic properties of mitochondrial enzymes, both during acute and multiple exposures; and (b) ultrastructural changes in mitochondria, which reflect various degrees of mitochondrial energization. Within a specific range of reduced O concentrations, activation of the MC II is a compensatory response supporting the RC electron transport function. In this process, MC I develops new kinetic properties, and its function recovers in hypoxia by reprograming the RC substrate site. Therefore, the mitochondrial RC performs as an in vivo molecular oxygen sensor. Substantial differences between responses of rats with high and low resistance to hypoxia were determined.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8395493PMC
http://dx.doi.org/10.3390/ijms22168636DOI Listing

Publication Analysis

Top Keywords

mitochondrial enzymes
12
mitochondrial
8
resistance hypoxia
8
signaling role
4
role mitochondrial
4
enzymes ultrastructure
4
ultrastructure formation
4
formation molecular
4
molecular mechanisms
4
mechanisms adaptation
4

Similar Publications

The generation of reactive oxygen species (ROS) through nanozyme-mediated sonocatalytic therapy has demonstrated remarkable therapeutic efficacy in the field of cancer. Nevertheless, it remains a significant challenge for nanozymes with a single catalytic active center to generate sufficient ROS via Fenton or Fenton-like reactions to effectively induce tumor cell death. In order to enhance the catalytic efficacy, we devised and synthesized a multiple active centre and mitochondrial-targeted perovskite nanozyme (NCFP), doped with cobalt (Co) element, and incorporated 4-carboxybutyltriphenylphosphonium bromide (TPP) as a mitochondrial targeting marker for ultrasound (US)-assisted enzyme-like catalytic treatment of tumors.

View Article and Find Full Text PDF

Efficiency of the cytochrome c oxidase subunit II gene for the delimitation of termite species (Blattodea: Isoptera) in the state of Paraíba, northeastern Brazil.

PLoS One

September 2025

Laboratório de Termitologia, Departamento de Sistemática e Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil.

With the aim of expanding the possibilities of identifying termite species, in the present study we generated genetic data based on sequences of the mitochondrial gene encoding cytochrome c oxidase subunit II (COII) for termites (Blattodea: Isoptera) occurring in the state of Paraíba, northeastern Brazil. The genetic data were obtained from 135 COII sequences identified in 28 genera and 48 species. These are the first COII sequences for 15 taxa (31.

View Article and Find Full Text PDF

Primary coenzyme Q (CoQ) deficiency is a mitochondrial disorder with variable clinical presentation and limited response to standard CoQ10 supplementation. Recent studies suggest that 4-hydroxybenzoic acid (4-HBA), a biosynthetic precursor of CoQ, may serve as a substrate enhancement treatment in cases caused by pathogenic variants in COQ2, a gene encoding a key enzyme in CoQ biosynthesis. However, it remains unclear whether 4-HBA is required throughout life to maintain health, whether it offers advantages over CoQ10 treatment, and whether these findings are translatable to humans.

View Article and Find Full Text PDF

Background: Cardiac ischemia reperfusion (I/R) injury is a serious consequence of reperfusion therapy for myocardial infarction (MI). Peptidylarginine deiminase 4 (PAD4) is a calcium-dependent enzyme that catalyzes the citrullination of proteins. In previous studies, PAD4 inhibition protected distinct organs from I/R injury by preventing the formation of neutrophil extracellular traps (NETs) and attenuating inflammatory responses.

View Article and Find Full Text PDF

Background: Ear canker in domestic rabbits is caused by infestations of non-burrowing parasitic mites, Psoroptes spp., but the specific species responsible for these infestations remains unclear. This study reports the clinical signs and performs the molecular characterization and phylogenetic analysis of Psoroptes ovis isolated from the ear canal of a domestic rabbit in South India.

View Article and Find Full Text PDF