Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Studies that evaluate the impact of microplastic particles (MPs) often apply particles of pristine material. However, MPs are affected by various abiotic and biotic processes in the environment that possibly modify their physical and chemical characteristics, which might then result in their altered toxic effect. This study evaluated the consequence of weathering on the release of toxic leachates from microplastics. MPs derived from six marine antifouling paints, end-of-life tires, and unplasticised PVC were exposed to UV-C radiation to simulate weathering. Non-weathered and weathered MPs were leached in algae growth medium for 72 h to demonstrate additive release under freshwater conditions. The model organism, green algae , was exposed to the resulting leachates of both non-weathered and weathered MPs. The results of the growth inhibition tests showed that the leachates of weathered microparticles were more toxic than of the non-weathered material, which was reflected in their lower median effect concentration (EC) values. Chemical analysis of the leachates revealed that the concentration of heavy metals was several times higher in the leachates of the weathered MPs compared to the non-weathered ones, which likely contributed to the increased toxicity. Our findings suggest including weathered microplastic particles in exposure studies due to their probably differing impact on biota from MPs of pristine materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402562PMC
http://dx.doi.org/10.3390/toxics9080185DOI Listing

Publication Analysis

Top Keywords

microplastic particles
12
weathered mps
12
release toxic
8
toxic leachates
8
green algae
8
non-weathered weathered
8
leachates weathered
8
mps
7
leachates
6
weathered
5

Similar Publications

Microplastics in coastal waters of Northern Cyprus: Environmental burden and seafood contamination.

Mar Pollut Bull

September 2025

Faculty of Fisheries, Mersin University, Yenisehir Campus, Mersin, 33160, Turkey; Mersin University, Marine Life Museum Yenisehir Campus, Mersin, 33160, Turkey.

In this study, surface water, sediment, and fish samples were collected from five regions along the northern coasts of Cyprus during both summer and winter seasons to assess their microplastic contamination levels. In surface waters, the highest microplastic concentrations per square meter were recorded in the following order: Karpaz (North) (0.16 MP/m), Güzelyurt (0.

View Article and Find Full Text PDF

Hepatotoxicity induced by polylactic acid microplastics: The mediating role of gut microbiota and uric acid metabolism.

J Adv Res

September 2025

National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China. Electronic address: huangzhenlie85825

Introduction: The increasing use of biodegradable plastics has led to the inevitable human consumption of biodegradable microplastics (MPs). These MPs can be degraded and absorbed into various organs and tissues via the gastrointestinal tract, with the liver being the primary target for digestion and absorption.

Objectives: This study aimed to investigate the toxic effects and mechanisms of biodegradable MPs on the liver following gastrointestinal degradation.

View Article and Find Full Text PDF

Succession-driven potential functional shifts in microbial communities in the tire-plastisphere: Comparison of pristine and scrap tire.

Environ Pollut

September 2025

Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geog

Tire microplastics (TMPs) represent a major contributor to microplastic pollution, posing threats to aquatic ecosystems. As carbon-rich substrates, TMPs influence microbial colonization and ecological functions. This study investigates the impacts of pristine (P-TMPs) and scrap (S-TMPs) TMPs from the same brand on microbial communities within the tire-plastisphere.

View Article and Find Full Text PDF

Microplastics (MPs) are emerging vectors for hydrophobic organic pollutants, including polycyclic aromatic hydrocarbons (PAHs), in aquatic environments. Due to their high surface area and sorption potential, MPs can enhance the environmental persistence and bioavailability of toxic compounds, posing potential risks to both aquatic organisms and human health. This study investigates the distribution, sorption behavior, and effects on pollutant transport, distribution, and exposure pathways of PAHs-contaminated microplastics in two major Romanian rivers: the Prahova and Ialomita.

View Article and Find Full Text PDF

Concerns regarding the health implications of microplastics (MPs) pollution and their byproducts, such as bisphenol A (BPA) and phthalate esters (PAEs), have escalated, particularly for vulnerable populations like infants. Since infants are primarily nourished by breast milk or infant formula, their heightened exposure risk to these contaminants warrants investigation. This study assessed the presence, morphological characteristics, and associated byproducts (BPA and PAEs) of MPs in commercially available infant formulas sold in the Iranian market.

View Article and Find Full Text PDF