98%
921
2 minutes
20
Grounded running predominantly differs from traditional aerial running by having alternating single and double stance with no flight phase. Approximately, 16% of runners in an open marathon and 33% of recreational runners in a 5 km running event adopted a grounded running technique. Grounded running typically occurs at a speed range of 2-3 m·s, is characterised by a larger duty factor, reduced vertical leg stiffness, lower vertical oscillation of the centre of mass (COM) and greater impact attenuation than aerial running. Grounded running typically induces an acute increase in metabolic cost, likely due to the larger duty factor. The increased duty factor may translate to a more stable locomotion. The reduced vertical oscillation of COM, attenuated impact shock, and potential for improved postural stability may make grounded running a preferred form of physical exercise in people new to running or with low loading capacities (eg, novice overweight/obese, elderly runners, rehabilitating athletes). Grounded running as a less impactful, but metabolically more challenging form, could benefit these runners to optimise their cardio-metabolic health, while at the same time minimise running-related injury risk. This review discusses the mechanical demands and energetics of grounded running along with recommendations and suggestions to implement this technique in practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323463 | PMC |
http://dx.doi.org/10.1136/bmjsem-2020-000963 | DOI Listing |
Quantum Mach Intell
September 2025
USRA Research Institute for Advanced Computer Science (RIACS), Moffett Field, CA USA.
We discuss guidelines for evaluating the performance of parameterized stochastic solvers for optimization problems, with particular attention to systems that employ novel hardware, such as digital quantum processors running variational algorithms, analog processors performing quantum annealing, or coherent Ising machines. We illustrate through an example a benchmarking procedure grounded in the statistical analysis of the expectation of a given performance metric measured in a test environment. In particular, we discuss the necessity and cost of setting parameters that affect the algorithm's performance.
View Article and Find Full Text PDFJ Sci Med Sport
August 2025
Department of Physical Therapy & Rehabilitation Sciences, Drexel University, USA.
Objectives: Strategies to reduce Achilles tendon forces during running may be beneficial for injury prevention. Increasing ground contact time could reduce Achilles tendon forces during running but may also elicit changes in cadence that could offset these reductions. The purpose of this study was to determine if changing ground contact time altered Achilles tendon forces during running, with both a fixed and a free cadence.
View Article and Find Full Text PDFJ Appl Biomech
September 2025
Department of Exercise Sciences, Brigham Young University, Provo, UT, USA.
This study investigated the effects of air resistance and drafting on oxygen uptake, ground reaction forces, and lower body kinematics during treadmill running. Thirty-three trained distance runners ran at 3.35 to 4.
View Article and Find Full Text PDFInt J Sports Med
September 2025
Unidad Académica de Biofísica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
In the last decades, gait variability (GV) has provided new insight into motor control. No study, though, quantified the GV together with bilateral symmetry at different running intensities in runners. For this aim, 16 male runners (35±6 y), after a simulated 10-km time trial (average speed, TT), performed randomly three 15-minute running bouts at TT running speed, 10% slower, and 10% faster than TT.
View Article and Find Full Text PDFSci Rep
August 2025
Department of Physical Medicine and Rehabilitation, College of Medicine, Gainesville, FL, 112730, USA.
This three-part study investigated alternative pre-processing techniques to better understand the differences in patterns of ground reaction force (GRF) and load rate (LR) among runners with running-related injury (RRI). 534 runners were assessed on an instrumented treadmill with 3D kinematic data capture. Participants were classified as "injured" or "uninjured" and "rearfoot" (RF) or "non-rearfoot" (non-RF) strikers.
View Article and Find Full Text PDF